8 13

From Knot Atlas
Jump to navigationJump to search

8 12.gif

8_12

8 14.gif

8_14

8 13.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 13's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 13 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X11,1,12,16 X5,13,6,12 X15,7,16,6 X7,15,8,14 X13,9,14,8 X9,2,10,3
Gauss code -1, 8, -2, 1, -4, 5, -6, 7, -8, 2, -3, 4, -7, 6, -5, 3
Dowker-Thistlethwaite code 4 10 12 14 2 16 8 6
Conway Notation [31112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

8 13 ML.gif 8 13 AP.gif
[{10, 5}, {1, 8}, {6, 9}, {8, 10}, {9, 4}, {5, 2}, {3, 1}, {4, 7}, {2, 6}, {7, 3}]

[edit Notes on presentations of 8 13]

Knot 8_13.
A graph, knot 8_13.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,5\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-6]
Hyperbolic Volume 8.53123
A-Polynomial See Data:8 13/A-polynomial

[edit Notes for 8 13's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 8 13's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^2-7 t+11-7 t^{-1} +2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 29, 0 }
Jones polynomial [math]\displaystyle{ -q^5+2 q^4-3 q^3+5 q^2-5 q+5-4 q^{-1} +3 q^{-2} - q^{-3} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^4 a^{-2} +z^4-a^2 z^2+2 z^2 a^{-2} -z^2 a^{-4} +z^2+2 a^{-2} - a^{-4} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^7 a^{-1} +z^7 a^{-3} +5 z^6 a^{-2} +2 z^6 a^{-4} +3 z^6+4 a z^5+4 z^5 a^{-1} +z^5 a^{-3} +z^5 a^{-5} +3 a^2 z^4-11 z^4 a^{-2} -6 z^4 a^{-4} -2 z^4+a^3 z^3-4 a z^3-9 z^3 a^{-1} -7 z^3 a^{-3} -3 z^3 a^{-5} -2 a^2 z^2+7 z^2 a^{-2} +5 z^2 a^{-4} +a z+3 z a^{-1} +4 z a^{-3} +2 z a^{-5} -2 a^{-2} - a^{-4} }[/math]
The A2 invariant [math]\displaystyle{ -q^{10}+q^8+q^6-q^4+q^2-1+ q^{-2} + q^{-4} + q^{-6} +2 q^{-8} - q^{-10} - q^{-16} }[/math]
The G2 invariant [math]\displaystyle{ q^{52}-2 q^{50}+3 q^{48}-4 q^{46}+q^{44}-3 q^{40}+9 q^{38}-11 q^{36}+12 q^{34}-8 q^{32}+6 q^{28}-13 q^{26}+18 q^{24}-16 q^{22}+10 q^{20}-8 q^{16}+14 q^{14}-10 q^{12}+4 q^{10}+2 q^8-10 q^6+9 q^4-3 q^2-7+17 q^{-2} -22 q^{-4} +19 q^{-6} -6 q^{-8} -9 q^{-10} +19 q^{-12} -26 q^{-14} +26 q^{-16} -14 q^{-18} +3 q^{-20} +11 q^{-22} -16 q^{-24} +21 q^{-26} -10 q^{-28} + q^{-30} +6 q^{-32} -9 q^{-34} +8 q^{-36} -6 q^{-40} +14 q^{-42} -15 q^{-44} +9 q^{-46} + q^{-48} -13 q^{-50} +18 q^{-52} -19 q^{-54} +11 q^{-56} -4 q^{-58} -6 q^{-60} +11 q^{-62} -13 q^{-64} +10 q^{-66} -4 q^{-68} - q^{-70} +2 q^{-72} -4 q^{-74} +3 q^{-76} - q^{-78} + q^{-80} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{14}{3} }[/math] [math]\displaystyle{ -\frac{38}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{80}{3} }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ -24 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{56}{3} }[/math] [math]\displaystyle{ -\frac{152}{3} }[/math] [math]\displaystyle{ \frac{1951}{30} }[/math] [math]\displaystyle{ \frac{526}{5} }[/math] [math]\displaystyle{ -\frac{6058}{45} }[/math] [math]\displaystyle{ -\frac{31}{18} }[/math] [math]\displaystyle{ -\frac{1409}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 8 13. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
11        1-1
9       1 1
7      21 -1
5     31  2
3    22   0
1   33    0
-1  23     1
-3 12      -1
-5 2       2
-71        -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials