8 13
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 13's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3,10,4,11 X11,1,12,16 X5,13,6,12 X15,7,16,6 X7,15,8,14 X13,9,14,8 X9,2,10,3 |
| Gauss code | -1, 8, -2, 1, -4, 5, -6, 7, -8, 2, -3, 4, -7, 6, -5, 3 |
| Dowker-Thistlethwaite code | 4 10 12 14 2 16 8 6 |
| Conway Notation | [31112] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
|
![]() [{10, 5}, {1, 8}, {6, 9}, {8, 10}, {9, 4}, {5, 2}, {3, 1}, {4, 7}, {2, 6}, {7, 3}] |
[edit Notes on presentations of 8 13]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 13"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X11,1,12,16 X5,13,6,12 X15,7,16,6 X7,15,8,14 X13,9,14,8 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 1, -4, 5, -6, 7, -8, 2, -3, 4, -7, 6, -5, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 14 2 16 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{-1,-1,2,-1,2,2,3,-2,3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 9, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{10, 5}, {1, 8}, {6, 9}, {8, 10}, {9, 4}, {5, 2}, {3, 1}, {4, 7}, {2, 6}, {7, 3}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-7 t+11-7 t^{-1} +2 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4+z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 29, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+2 q^4-3 q^3+5 q^2-5 q+5-4 q^{-1} +3 q^{-2} - q^{-3} } |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-2 q^{20}-q^{18}+4 q^{16}-3 q^{14}-q^{12}+6 q^{10}-3 q^8-3 q^6+4 q^4-2 q^2-2+2 q^{-2} +2 q^{-4} + q^{-6} +5 q^{-10} +4 q^{-12} -4 q^{-14} +3 q^{-16} +2 q^{-18} -6 q^{-20} + q^{-24} -4 q^{-26} + q^{-28} + q^{-30} - q^{-32} + q^{-34} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}+q^{11}+q^7-q^5+q^3-q+ q^{-3} + q^{-5} +2 q^{-7} + q^{-9} +2 q^{-11} - q^{-13} - q^{-17} - q^{-21} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-q^{26}-2 q^{24}+q^{22}+2 q^{20}-q^{18}-2 q^{16}+3 q^{14}+3 q^{12}-3 q^{10}-3 q^8+4 q^6-4 q^2+1+2 q^{-2} -2 q^{-4} - q^{-6} +4 q^{-8} +3 q^{-10} + q^{-12} +7 q^{-14} +8 q^{-16} - q^{-20} +4 q^{-22} -2 q^{-24} -7 q^{-26} -4 q^{-28} -2 q^{-32} -3 q^{-34} + q^{-36} +2 q^{-38} + q^{-44} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}+q^{14}+q^8-q^6+q^4-q^2+ q^{-4} + q^{-6} +2 q^{-8} +2 q^{-10} + q^{-12} +2 q^{-14} - q^{-16} - q^{-20} - q^{-22} - q^{-26} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}+2 q^{20}-3 q^{18}+4 q^{16}-5 q^{14}+5 q^{12}-4 q^{10}+3 q^8-q^6+4 q^2-6+8 q^{-2} -8 q^{-4} +9 q^{-6} -8 q^{-8} +7 q^{-10} -4 q^{-12} +2 q^{-14} + q^{-16} -2 q^{-18} +4 q^{-20} -4 q^{-22} +5 q^{-24} -4 q^{-26} +3 q^{-28} -3 q^{-30} + q^{-32} - q^{-34} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-2 q^{32}-2 q^{30}+q^{28}+4 q^{26}+q^{24}-4 q^{22}-3 q^{20}+3 q^{18}+5 q^{16}-5 q^{12}-2 q^{10}+3 q^8+3 q^6-3 q^4-3 q^2+2+4 q^{-2} -3 q^{-6} +4 q^{-10} +2 q^{-12} -2 q^{-14} - q^{-16} +4 q^{-18} +3 q^{-20} -2 q^{-22} -4 q^{-24} +2 q^{-26} +5 q^{-28} + q^{-30} -5 q^{-32} -4 q^{-34} +2 q^{-36} +4 q^{-38} - q^{-40} -4 q^{-42} -2 q^{-44} +2 q^{-46} +2 q^{-48} - q^{-50} - q^{-52} + q^{-56} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-2 q^{50}+3 q^{48}-4 q^{46}+q^{44}-3 q^{40}+9 q^{38}-11 q^{36}+12 q^{34}-8 q^{32}+6 q^{28}-13 q^{26}+18 q^{24}-16 q^{22}+10 q^{20}-8 q^{16}+14 q^{14}-10 q^{12}+4 q^{10}+2 q^8-10 q^6+9 q^4-3 q^2-7+17 q^{-2} -22 q^{-4} +19 q^{-6} -6 q^{-8} -9 q^{-10} +19 q^{-12} -26 q^{-14} +26 q^{-16} -14 q^{-18} +3 q^{-20} +11 q^{-22} -16 q^{-24} +21 q^{-26} -10 q^{-28} + q^{-30} +6 q^{-32} -9 q^{-34} +8 q^{-36} -6 q^{-40} +14 q^{-42} -15 q^{-44} +9 q^{-46} + q^{-48} -13 q^{-50} +18 q^{-52} -19 q^{-54} +11 q^{-56} -4 q^{-58} -6 q^{-60} +11 q^{-62} -13 q^{-64} +10 q^{-66} -4 q^{-68} - q^{-70} +2 q^{-72} -4 q^{-74} +3 q^{-76} - q^{-78} + q^{-80} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 13"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-7 t+11-7 t^{-1} +2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 29, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+2 q^4-3 q^3+5 q^2-5 q+5-4 q^{-1} +3 q^{-2} - q^{-3} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 13"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-7 t+11-7 t^{-1} +2 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+2 q^4-3 q^3+5 q^2-5 q+5-4 q^{-1} +3 q^{-2} - q^{-3} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 8 13. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-2 q^{14}-q^{13}+6 q^{12}-5 q^{11}-6 q^{10}+15 q^9-6 q^8-15 q^7+24 q^6-5 q^5-24 q^4+28 q^3-q^2-27 q+26+2 q^{-1} -22 q^{-2} +17 q^{-3} +2 q^{-4} -12 q^{-5} +7 q^{-6} + q^{-7} -3 q^{-8} + q^{-9} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{30}+2 q^{29}+q^{28}-2 q^{27}-5 q^{26}+4 q^{25}+9 q^{24}-3 q^{23}-17 q^{22}+q^{21}+24 q^{20}+6 q^{19}-32 q^{18}-15 q^{17}+39 q^{16}+25 q^{15}-41 q^{14}-40 q^{13}+46 q^{12}+48 q^{11}-41 q^{10}-64 q^9+42 q^8+71 q^7-35 q^6-81 q^5+33 q^4+82 q^3-24 q^2-84 q+20+77 q^{-1} -12 q^{-2} -69 q^{-3} +9 q^{-4} +54 q^{-5} -2 q^{-6} -42 q^{-7} +2 q^{-8} +27 q^{-9} + q^{-10} -19 q^{-11} + q^{-12} +9 q^{-13} -4 q^{-15} - q^{-16} +3 q^{-17} - q^{-18} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{50}-2 q^{49}-q^{48}+2 q^{47}+q^{46}+6 q^{45}-8 q^{44}-7 q^{43}+2 q^{42}+3 q^{41}+26 q^{40}-12 q^{39}-23 q^{38}-12 q^{37}-4 q^{36}+65 q^{35}+3 q^{34}-31 q^{33}-45 q^{32}-43 q^{31}+104 q^{30}+41 q^{29}-7 q^{28}-77 q^{27}-115 q^{26}+116 q^{25}+79 q^{24}+53 q^{23}-82 q^{22}-198 q^{21}+96 q^{20}+97 q^{19}+128 q^{18}-59 q^{17}-269 q^{16}+56 q^{15}+98 q^{14}+200 q^{13}-26 q^{12}-319 q^{11}+12 q^{10}+89 q^9+253 q^8+8 q^7-338 q^6-31 q^5+69 q^4+279 q^3+40 q^2-318 q-59+36 q^{-1} +258 q^{-2} +65 q^{-3} -251 q^{-4} -62 q^{-5} -4 q^{-6} +192 q^{-7} +70 q^{-8} -161 q^{-9} -37 q^{-10} -28 q^{-11} +109 q^{-12} +50 q^{-13} -83 q^{-14} -8 q^{-15} -25 q^{-16} +47 q^{-17} +22 q^{-18} -36 q^{-19} +5 q^{-20} -12 q^{-21} +15 q^{-22} +7 q^{-23} -12 q^{-24} +3 q^{-25} -3 q^{-26} +4 q^{-27} + q^{-28} -3 q^{-29} + q^{-30} } |
| 5 | |
| 6 | |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{140}+2 q^{139}+q^{138}-2 q^{137}-q^{136}-2 q^{135}+2 q^{134}-2 q^{132}+8 q^{131}+6 q^{130}-4 q^{129}-6 q^{128}-14 q^{127}-2 q^{126}+3 q^{125}-6 q^{124}+25 q^{123}+28 q^{122}+10 q^{121}-5 q^{120}-48 q^{119}-35 q^{118}-22 q^{117}-32 q^{116}+45 q^{115}+85 q^{114}+82 q^{113}+69 q^{112}-57 q^{111}-101 q^{110}-121 q^{109}-170 q^{108}-25 q^{107}+102 q^{106}+211 q^{105}+300 q^{104}+122 q^{103}-33 q^{102}-201 q^{101}-442 q^{100}-335 q^{99}-149 q^{98}+141 q^{97}+551 q^{96}+538 q^{95}+423 q^{94}+101 q^{93}-521 q^{92}-731 q^{91}-781 q^{90}-482 q^{89}+315 q^{88}+768 q^{87}+1112 q^{86}+1011 q^{85}+115 q^{84}-594 q^{83}-1312 q^{82}-1559 q^{81}-751 q^{80}+118 q^{79}+1284 q^{78}+2043 q^{77}+1489 q^{76}+608 q^{75}-924 q^{74}-2293 q^{73}-2229 q^{72}-1563 q^{71}+231 q^{70}+2253 q^{69}+2838 q^{68}+2603 q^{67}+735 q^{66}-1864 q^{65}-3166 q^{64}-3609 q^{63}-1943 q^{62}+1125 q^{61}+3246 q^{60}+4506 q^{59}+3170 q^{58}-168 q^{57}-2947 q^{56}-5125 q^{55}-4448 q^{54}-1027 q^{53}+2453 q^{52}+5588 q^{51}+5550 q^{50}+2183 q^{49}-1703 q^{48}-5715 q^{47}-6547 q^{46}-3436 q^{45}+894 q^{44}+5790 q^{43}+7334 q^{42}+4473 q^{41}-40 q^{40}-5607 q^{39}-7992 q^{38}-5517 q^{37}-752 q^{36}+5502 q^{35}+8509 q^{34}+6296 q^{33}+1474 q^{32}-5273 q^{31}-8946 q^{30}-7071 q^{29}-2070 q^{28}+5177 q^{27}+9302 q^{26}+7641 q^{25}+2595 q^{24}-5016 q^{23}-9657 q^{22}-8219 q^{21}-3010 q^{20}+4948 q^{19}+9926 q^{18}+8672 q^{17}+3456 q^{16}-4798 q^{15}-10186 q^{14}-9151 q^{13}-3854 q^{12}+4617 q^{11}+10293 q^{10}+9531 q^9+4354 q^8-4240 q^7-10292 q^6-9891 q^5-4866 q^4+3744 q^3+10026 q^2+10041 q+5442-2978 q^{-1} -9500 q^{-2} -10054 q^{-3} -5946 q^{-4} +2107 q^{-5} +8639 q^{-6} +9702 q^{-7} +6341 q^{-8} -1071 q^{-9} -7507 q^{-10} -9069 q^{-11} -6480 q^{-12} +92 q^{-13} +6140 q^{-14} +8055 q^{-15} +6347 q^{-16} +783 q^{-17} -4706 q^{-18} -6812 q^{-19} -5852 q^{-20} -1392 q^{-21} +3288 q^{-22} +5393 q^{-23} +5128 q^{-24} +1742 q^{-25} -2107 q^{-26} -4026 q^{-27} -4165 q^{-28} -1758 q^{-29} +1145 q^{-30} +2734 q^{-31} +3215 q^{-32} +1621 q^{-33} -534 q^{-34} -1768 q^{-35} -2280 q^{-36} -1257 q^{-37} +140 q^{-38} +973 q^{-39} +1532 q^{-40} +966 q^{-41} +22 q^{-42} -532 q^{-43} -954 q^{-44} -606 q^{-45} -73 q^{-46} +203 q^{-47} +554 q^{-48} +390 q^{-49} +75 q^{-50} -72 q^{-51} -317 q^{-52} -209 q^{-53} -37 q^{-54} +8 q^{-55} +153 q^{-56} +98 q^{-57} +27 q^{-58} +30 q^{-59} -88 q^{-60} -61 q^{-61} +4 q^{-62} -9 q^{-63} +35 q^{-64} +5 q^{-65} +29 q^{-67} -22 q^{-68} -16 q^{-69} +6 q^{-70} - q^{-71} +9 q^{-72} -7 q^{-73} -5 q^{-74} +13 q^{-75} -4 q^{-76} -5 q^{-77} +3 q^{-78} +3 q^{-80} -4 q^{-81} - q^{-82} +3 q^{-83} - q^{-84} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|






