In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 74]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
X[11, 18, 12, 19], X[9, 20, 10, 1], X[19, 10, 20, 11],
X[17, 6, 18, 7], X[7, 16, 8, 17], X[15, 8, 16, 9]] |
In[3]:= | GaussCode[Knot[10, 74]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 8, -9, 10, -6, 7, -5, 3, -4, 2, -10, 9, -8,
5, -7, 6] |
In[4]:= | DTCode[Knot[10, 74]] |
Out[4]= | DTCode[4, 12, 14, 16, 20, 18, 2, 8, 6, 10] |
In[5]:= | br = BR[Knot[10, 74]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -2, -3, 2, 2, 4, -3, -2, 4, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 14} |
In[7]:= | BraidIndex[Knot[10, 74]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 74]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 74]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 74]][t] |
Out[10]= | 4 16 2
-23 - -- + -- + 16 t - 4 t
2 t
t |
In[11]:= | Conway[Knot[10, 74]][z] |
Out[11]= | 4
1 - 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 67], Knot[10, 74], Knot[11, NonAlternating, 68]} |
In[13]:= | {KnotDet[Knot[10, 74]], KnotSignature[Knot[10, 74]]} |
Out[13]= | {63, -2} |
In[14]:= | Jones[Knot[10, 74]][q] |
Out[14]= | -9 2 4 8 9 10 11 8 6
-3 + q - -- + -- - -- + -- - -- + -- - -- + - + q
8 7 6 5 4 3 2 q
q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 74]} |
In[16]:= | A2Invariant[Knot[10, 74]][q] |
Out[16]= | -28 2 3 2 2 2 2 2 -4 3 2 4
-1 + q + --- - --- - --- - --- + --- + -- + -- - q + -- - q + q
22 20 18 14 12 8 6 2
q q q q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 74]][a, z] |
Out[17]= | 2 6 8 2 2 2 4 2 6 2 8 2 2 4
2 a - 2 a + a + z + a z - 2 a z - a z + a z - a z -
4 4 6 4
2 a z - a z |
In[18]:= | Kauffman[Knot[10, 74]][a, z] |
Out[18]= | 2 6 8 5 7 9 2 2 2 4 2
-2 a + 2 a + a - 4 a z - 8 a z - 4 a z - z + 5 a z + 8 a z -
6 2 8 2 10 2 3 3 3 5 3 7 3
a z + a z + 4 a z - 3 a z + 3 a z + 9 a z + 11 a z +
9 3 4 2 4 4 4 6 4 10 4 5
8 a z + z - 7 a z - 9 a z + 3 a z - 4 a z + 3 a z -
3 5 5 5 7 5 9 5 2 6 4 6 6 6
6 a z - 12 a z - 10 a z - 7 a z + 5 a z + a z - 9 a z -
8 6 10 6 3 7 5 7 7 7 9 7 4 8
4 a z + a z + 5 a z + 5 a z + 2 a z + 2 a z + 3 a z +
6 8 8 8 5 9 7 9
5 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 74]], Vassiliev[3][Knot[10, 74]]} |
Out[19]= | {0, 2} |
In[20]:= | Kh[Knot[10, 74]][q, t] |
Out[20]= | 3 4 1 1 1 3 1 5 3
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
3 q 19 8 17 7 15 7 15 6 13 6 13 5 11 5
q q t q t q t q t q t q t q t
4 5 6 4 5 6 3 5 t
------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + - +
11 4 9 4 9 3 7 3 7 2 5 2 5 3 q
q t q t q t q t q t q t q t q t
3 2
2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 74], 2][q] |
Out[21]= | -26 2 6 9 4 23 19 19 53 25
-16 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- -
25 23 22 21 20 19 18 17 16
q q q q q q q q q
47 79 19 75 90 6 86 82 6 72 54 11
--- + --- - --- - --- + --- - --- - -- + -- + -- - -- + -- + -- -
15 14 13 12 11 10 9 8 7 6 5 4
q q q q q q q q q q q q
43 24 7 2 3 4
-- + -- + - + 7 q + 2 q - 3 q + q
3 2 q
q q |