10 67
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 67's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X13,6,14,7 X9,18,10,19 X15,20,16,1 X19,16,20,17 X17,8,18,9 |
| Gauss code | -1, 4, -3, 1, -5, 6, -2, 10, -7, 3, -4, 2, -6, 5, -8, 9, -10, 7, -9, 8 |
| Dowker-Thistlethwaite code | 4 10 14 12 18 2 6 20 8 16 |
| Conway Notation | [22,3,21] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 14, width is 5, Braid index is 5 |
|
![]() [{12, 5}, {6, 4}, {5, 9}, {3, 6}, {8, 10}, {9, 7}, {4, 8}, {7, 2}, {1, 3}, {2, 11}, {10, 12}, {11, 1}] |
[edit Notes on presentations of 10 67]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 67"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X13,6,14,7 X9,18,10,19 X15,20,16,1 X19,16,20,17 X17,8,18,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -5, 6, -2, 10, -7, 3, -4, 2, -6, 5, -8, 9, -10, 7, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 12 18 2 6 20 8 16 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,3,21] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{-1,-1,-1,-2,1,-2,-3,2,2,4,-3,-2,4,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 14, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 5}, {6, 4}, {5, 9}, {3, 6}, {8, 10}, {9, 7}, {4, 8}, {7, 2}, {1, 3}, {2, 11}, {10, 12}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t^2+16 t-23+16 t^{-1} -4 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-4 z^4} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 63, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+5 q^{-1} -8 q^{-2} +10 q^{-3} -10 q^{-4} +10 q^{-5} -8 q^{-6} +5 q^{-7} -3 q^{-8} + q^{-9} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^8-z^4 a^6-2 z^4 a^4-2 z^2 a^4-z^4 a^2+z^2+1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{10}-3 z^4 a^{10}+2 z^2 a^{10}+3 z^7 a^9-10 z^5 a^9+9 z^3 a^9-2 z a^9+3 z^8 a^8-7 z^6 a^8+2 z^4 a^8+z^9 a^7+5 z^7 a^7-21 z^5 a^7+19 z^3 a^7-6 z a^7+6 z^8 a^6-13 z^6 a^6+7 z^4 a^6-2 z^2 a^6+z^9 a^5+6 z^7 a^5-19 z^5 a^5+19 z^3 a^5-6 z a^5+3 z^8 a^4-2 z^6 a^4-z^4 a^4+2 z^2 a^4+4 z^7 a^3-6 z^5 a^3+7 z^3 a^3-2 z a^3+3 z^6 a^2-2 z^4 a^2+2 z^5 a-2 z^3 a+z^4-2 z^2+1} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-q^{26}-q^{24}+2 q^{22}-2 q^{20}+q^{16}-q^{14}+2 q^{12}-q^{10}+q^8-2 q^4+3 q^2+ q^{-4} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-2 q^{140}+5 q^{138}-9 q^{136}+9 q^{134}-8 q^{132}-2 q^{130}+19 q^{128}-34 q^{126}+47 q^{124}-44 q^{122}+19 q^{120}+18 q^{118}-60 q^{116}+90 q^{114}-93 q^{112}+61 q^{110}-2 q^{108}-57 q^{106}+98 q^{104}-99 q^{102}+65 q^{100}-6 q^{98}-47 q^{96}+72 q^{94}-67 q^{92}+23 q^{90}+37 q^{88}-76 q^{86}+85 q^{84}-53 q^{82}-10 q^{80}+71 q^{78}-119 q^{76}+124 q^{74}-94 q^{72}+23 q^{70}+56 q^{68}-116 q^{66}+141 q^{64}-111 q^{62}+48 q^{60}+23 q^{58}-76 q^{56}+93 q^{54}-70 q^{52}+20 q^{50}+37 q^{48}-62 q^{46}+60 q^{44}-20 q^{42}-35 q^{40}+73 q^{38}-83 q^{36}+60 q^{34}-20 q^{32}-30 q^{30}+65 q^{28}-78 q^{26}+72 q^{24}-41 q^{22}+6 q^{20}+20 q^{18}-39 q^{16}+42 q^{14}-37 q^{12}+27 q^{10}-9 q^8-2 q^6+12 q^4-15 q^2+14-10 q^{-2} +7 q^{-4} -2 q^{-6} - q^{-8} +3 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{19}-2 q^{17}+2 q^{15}-3 q^{13}+2 q^{11}+2 q^5-3 q^3+3 q- q^{-1} + q^{-3} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-2 q^{52}-2 q^{50}+7 q^{48}-2 q^{46}-10 q^{44}+12 q^{42}+5 q^{40}-18 q^{38}+8 q^{36}+12 q^{34}-18 q^{32}-q^{30}+15 q^{28}-7 q^{26}-7 q^{24}+9 q^{22}+6 q^{20}-11 q^{18}-5 q^{16}+17 q^{14}-8 q^{12}-13 q^{10}+19 q^8-q^6-12 q^4+10 q^2+1-5 q^{-2} +3 q^{-4} - q^{-8} + q^{-10} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{105}-2 q^{103}-2 q^{101}+3 q^{99}+7 q^{97}-2 q^{95}-16 q^{93}-2 q^{91}+24 q^{89}+15 q^{87}-30 q^{85}-35 q^{83}+26 q^{81}+57 q^{79}-10 q^{77}-72 q^{75}-18 q^{73}+78 q^{71}+46 q^{69}-67 q^{67}-71 q^{65}+48 q^{63}+90 q^{61}-28 q^{59}-94 q^{57}+2 q^{55}+92 q^{53}+16 q^{51}-82 q^{49}-33 q^{47}+69 q^{45}+47 q^{43}-45 q^{41}-61 q^{39}+17 q^{37}+70 q^{35}+13 q^{33}-74 q^{31}-48 q^{29}+67 q^{27}+75 q^{25}-47 q^{23}-90 q^{21}+27 q^{19}+90 q^{17}-6 q^{15}-73 q^{13}-12 q^{11}+55 q^9+16 q^7-33 q^5-12 q^3+16 q+9 q^{-1} -8 q^{-3} -3 q^{-5} +4 q^{-7} + q^{-9} -2 q^{-11} + q^{-13} - q^{-19} + q^{-21} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{172}-2 q^{170}-2 q^{168}+3 q^{166}+3 q^{164}+7 q^{162}-9 q^{160}-16 q^{158}-q^{156}+10 q^{154}+42 q^{152}+2 q^{150}-47 q^{148}-48 q^{146}-19 q^{144}+102 q^{142}+87 q^{140}-17 q^{138}-124 q^{136}-167 q^{134}+65 q^{132}+206 q^{130}+175 q^{128}-58 q^{126}-344 q^{124}-180 q^{122}+128 q^{120}+394 q^{118}+257 q^{116}-277 q^{114}-444 q^{112}-224 q^{110}+342 q^{108}+572 q^{106}+74 q^{104}-434 q^{102}-562 q^{100}+32 q^{98}+608 q^{96}+406 q^{94}-193 q^{92}-638 q^{90}-253 q^{88}+423 q^{86}+518 q^{84}+27 q^{82}-520 q^{80}-355 q^{78}+221 q^{76}+477 q^{74}+153 q^{72}-350 q^{70}-384 q^{68}+21 q^{66}+402 q^{64}+285 q^{62}-129 q^{60}-412 q^{58}-261 q^{56}+237 q^{54}+443 q^{52}+228 q^{50}-328 q^{48}-568 q^{46}-89 q^{44}+447 q^{42}+590 q^{40}-31 q^{38}-646 q^{36}-430 q^{34}+181 q^{32}+666 q^{30}+292 q^{28}-389 q^{26}-488 q^{24}-132 q^{22}+407 q^{20}+357 q^{18}-73 q^{16}-272 q^{14}-211 q^{12}+117 q^{10}+193 q^8+44 q^6-59 q^4-114 q^2+4+52 q^{-2} +23 q^{-4} +6 q^{-6} -34 q^{-8} - q^{-10} +8 q^{-12} +8 q^{-16} -8 q^{-18} + q^{-20} + q^{-22} -2 q^{-24} +4 q^{-26} -2 q^{-28} - q^{-34} + q^{-36} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{255}-2 q^{253}-2 q^{251}+3 q^{249}+3 q^{247}+3 q^{245}-9 q^{241}-16 q^{239}-q^{237}+20 q^{235}+28 q^{233}+20 q^{231}-16 q^{229}-61 q^{227}-68 q^{225}+q^{223}+92 q^{221}+133 q^{219}+78 q^{217}-81 q^{215}-235 q^{213}-226 q^{211}-2 q^{209}+288 q^{207}+424 q^{205}+242 q^{203}-218 q^{201}-625 q^{199}-605 q^{197}-61 q^{195}+661 q^{193}+1013 q^{191}+603 q^{189}-404 q^{187}-1291 q^{185}-1297 q^{183}-232 q^{181}+1217 q^{179}+1929 q^{177}+1190 q^{175}-641 q^{173}-2252 q^{171}-2248 q^{169}-388 q^{167}+2023 q^{165}+3083 q^{163}+1729 q^{161}-1218 q^{159}-3460 q^{157}-3022 q^{155}-16 q^{153}+3215 q^{151}+3976 q^{149}+1433 q^{147}-2453 q^{145}-4423 q^{143}-2674 q^{141}+1383 q^{139}+4290 q^{137}+3552 q^{135}-249 q^{133}-3777 q^{131}-3940 q^{129}-670 q^{127}+3027 q^{125}+3893 q^{123}+1304 q^{121}-2285 q^{119}-3584 q^{117}-1591 q^{115}+1651 q^{113}+3157 q^{111}+1679 q^{109}-1195 q^{107}-2755 q^{105}-1692 q^{103}+841 q^{101}+2466 q^{99}+1776 q^{97}-490 q^{95}-2248 q^{93}-2015 q^{91}-24 q^{89}+2028 q^{87}+2419 q^{85}+764 q^{83}-1652 q^{81}-2864 q^{79}-1751 q^{77}+974 q^{75}+3181 q^{73}+2890 q^{71}+33 q^{69}-3165 q^{67}-3921 q^{65}-1324 q^{63}+2651 q^{61}+4629 q^{59}+2678 q^{57}-1701 q^{55}-4748 q^{53}-3787 q^{51}+415 q^{49}+4236 q^{47}+4407 q^{45}+873 q^{43}-3228 q^{41}-4365 q^{39}-1845 q^{37}+1936 q^{35}+3761 q^{33}+2345 q^{31}-761 q^{29}-2797 q^{27}-2290 q^{25}-107 q^{23}+1750 q^{21}+1888 q^{19}+557 q^{17}-894 q^{15}-1320 q^{13}-638 q^{11}+322 q^9+777 q^7+535 q^5-33 q^3-396 q-349 q^{-1} -60 q^{-3} +164 q^{-5} +191 q^{-7} +66 q^{-9} -57 q^{-11} -86 q^{-13} -45 q^{-15} +17 q^{-17} +38 q^{-19} +16 q^{-21} -4 q^{-23} -8 q^{-25} -10 q^{-27} -2 q^{-29} +10 q^{-31} + q^{-33} -4 q^{-35} +2 q^{-37} -2 q^{-39} -2 q^{-41} +4 q^{-43} + q^{-45} -2 q^{-47} - q^{-53} + q^{-55} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-q^{26}-q^{24}+2 q^{22}-2 q^{20}+q^{16}-q^{14}+2 q^{12}-q^{10}+q^8-2 q^4+3 q^2+ q^{-4} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{72}-q^{70}-2 q^{68}+4 q^{64}+2 q^{62}-7 q^{60}-2 q^{58}+8 q^{56}+6 q^{54}-8 q^{52}-7 q^{50}+8 q^{48}+6 q^{46}-10 q^{44}-8 q^{42}+7 q^{40}+4 q^{38}-4 q^{36}-2 q^{34}+6 q^{32}+q^{30}-q^{28}+4 q^{26}-4 q^{24}-6 q^{22}+7 q^{20}+5 q^{18}-11 q^{16}-5 q^{14}+12 q^{12}+7 q^{10}-11 q^8-5 q^6+11 q^4+3 q^2-5- q^{-2} +3 q^{-4} + q^{-6} - q^{-8} + q^{-12} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-2 q^{58}+q^{56}+2 q^{54}-7 q^{52}+5 q^{50}+3 q^{48}-10 q^{46}+10 q^{44}+4 q^{42}-13 q^{40}+10 q^{38}+5 q^{36}-13 q^{34}+3 q^{32}+4 q^{30}-5 q^{28}-4 q^{26}+2 q^{24}+7 q^{22}-7 q^{20}-2 q^{18}+15 q^{16}-9 q^{14}-6 q^{12}+15 q^{10}-7 q^8-7 q^6+10 q^4-q^2-3+4 q^{-2} + q^{-4} - q^{-6} + q^{-8} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{37}-q^{35}-q^{31}+2 q^{29}-2 q^{27}+q^{25}-q^{23}+q^{21}-q^{19}+q^{17}+q^{15}-q^{13}+q^{11}-q^9+q^7-2 q^5+3 q^3+ q^{-1} + q^{-5} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{98}-2 q^{94}-2 q^{92}+3 q^{90}+5 q^{88}-3 q^{86}-9 q^{84}-2 q^{82}+12 q^{80}+9 q^{78}-10 q^{76}-15 q^{74}+4 q^{72}+19 q^{70}+7 q^{68}-17 q^{66}-14 q^{64}+9 q^{62}+17 q^{60}-q^{58}-16 q^{56}-4 q^{54}+11 q^{52}+6 q^{50}-10 q^{48}-7 q^{46}+8 q^{44}+9 q^{42}-7 q^{40}-12 q^{38}+4 q^{36}+14 q^{34}-15 q^{30}-5 q^{28}+15 q^{26}+12 q^{24}-10 q^{22}-16 q^{20}+3 q^{18}+18 q^{16}+6 q^{14}-12 q^{12}-12 q^{10}+3 q^8+12 q^6+3 q^4-5 q^2-5+ q^{-2} +4 q^{-4} +2 q^{-6} - q^{-8} - q^{-10} + q^{-14} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-2 q^{140}+5 q^{138}-9 q^{136}+9 q^{134}-8 q^{132}-2 q^{130}+19 q^{128}-34 q^{126}+47 q^{124}-44 q^{122}+19 q^{120}+18 q^{118}-60 q^{116}+90 q^{114}-93 q^{112}+61 q^{110}-2 q^{108}-57 q^{106}+98 q^{104}-99 q^{102}+65 q^{100}-6 q^{98}-47 q^{96}+72 q^{94}-67 q^{92}+23 q^{90}+37 q^{88}-76 q^{86}+85 q^{84}-53 q^{82}-10 q^{80}+71 q^{78}-119 q^{76}+124 q^{74}-94 q^{72}+23 q^{70}+56 q^{68}-116 q^{66}+141 q^{64}-111 q^{62}+48 q^{60}+23 q^{58}-76 q^{56}+93 q^{54}-70 q^{52}+20 q^{50}+37 q^{48}-62 q^{46}+60 q^{44}-20 q^{42}-35 q^{40}+73 q^{38}-83 q^{36}+60 q^{34}-20 q^{32}-30 q^{30}+65 q^{28}-78 q^{26}+72 q^{24}-41 q^{22}+6 q^{20}+20 q^{18}-39 q^{16}+42 q^{14}-37 q^{12}+27 q^{10}-9 q^8-2 q^6+12 q^4-15 q^2+14-10 q^{-2} +7 q^{-4} -2 q^{-6} - q^{-8} +3 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 67"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t^2+16 t-23+16 t^{-1} -4 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-4 z^4} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 63, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+5 q^{-1} -8 q^{-2} +10 q^{-3} -10 q^{-4} +10 q^{-5} -8 q^{-6} +5 q^{-7} -3 q^{-8} + q^{-9} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^8-z^4 a^6-2 z^4 a^4-2 z^2 a^4-z^4 a^2+z^2+1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{10}-3 z^4 a^{10}+2 z^2 a^{10}+3 z^7 a^9-10 z^5 a^9+9 z^3 a^9-2 z a^9+3 z^8 a^8-7 z^6 a^8+2 z^4 a^8+z^9 a^7+5 z^7 a^7-21 z^5 a^7+19 z^3 a^7-6 z a^7+6 z^8 a^6-13 z^6 a^6+7 z^4 a^6-2 z^2 a^6+z^9 a^5+6 z^7 a^5-19 z^5 a^5+19 z^3 a^5-6 z a^5+3 z^8 a^4-2 z^6 a^4-z^4 a^4+2 z^2 a^4+4 z^7 a^3-6 z^5 a^3+7 z^3 a^3-2 z a^3+3 z^6 a^2-2 z^4 a^2+2 z^5 a-2 z^3 a+z^4-2 z^2+1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_74, K11n68,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 67"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t^2+16 t-23+16 t^{-1} -4 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+5 q^{-1} -8 q^{-2} +10 q^{-3} -10 q^{-4} +10 q^{-5} -8 q^{-6} +5 q^{-7} -3 q^{-8} + q^{-9} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_74, K11n68,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 67. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-2 q^3+q^2+4 q-10+7 q^{-1} +13 q^{-2} -32 q^{-3} +18 q^{-4} +33 q^{-5} -64 q^{-6} +23 q^{-7} +58 q^{-8} -86 q^{-9} +17 q^{-10} +75 q^{-11} -83 q^{-12} + q^{-13} +75 q^{-14} -61 q^{-15} -15 q^{-16} +58 q^{-17} -31 q^{-18} -19 q^{-19} +32 q^{-20} -8 q^{-21} -12 q^{-22} +10 q^{-23} -3 q^{-25} + q^{-26} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




