In[1]:=      | 
<< KnotTheory`  | 
Loading KnotTheory` (version of August 29, 2005, 15:27:48)...  | 
In[2]:=  | PD[Knot[10, 24]]  | 
Out[2]=    | PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], 
 X[5, 16, 6, 17], X[9, 20, 10, 1], X[19, 6, 20, 7], X[7, 18, 8, 19], 
 
  X[17, 8, 18, 9], X[15, 10, 16, 11]]  | 
In[3]:=  | GaussCode[Knot[10, 24]]  | 
Out[3]=    | GaussCode[-1, 4, -3, 1, -5, 7, -8, 9, -6, 10, -2, 3, -4, 2, -10, 5, -9, 
  8, -7, 6]  | 
In[4]:=  | DTCode[Knot[10, 24]]  | 
Out[4]=    | DTCode[4, 12, 16, 18, 20, 14, 2, 10, 8, 6]  | 
In[5]:=  | br = BR[Knot[10, 24]]  | 
Out[5]=    | BR[5, {-1, -1, -2, 1, -2, -2, -2, -3, 2, 4, -3, 4}] | 
In[6]:=  | {First[br], Crossings[br]} | 
Out[6]=    | {5, 12} | 
In[7]:=  | BraidIndex[Knot[10, 24]]  | 
Out[7]=    | 5  | 
In[8]:=  | Show[DrawMorseLink[Knot[10, 24]]]  | 
 |   | 
| Out[8]= | -Graphics- | 
In[9]:=  | (#[Knot[10, 24]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} | 
Out[9]=    | {Reversible, 2, 2, 2, NotAvailable, 1} | 
In[10]:=  | alex = Alexander[Knot[10, 24]][t]  | 
Out[10]=    |       4    14             2
-19 - -- + -- + 14 t - 4 t
 
      2   t
 
      t  | 
In[11]:=  | Conway[Knot[10, 24]][z]  | 
Out[11]=    |        2      4
1 - 2 z  - 4 z  | 
In[12]:=  | Select[AllKnots[], (alex === Alexander[#][t])&]  | 
Out[12]=    | {Knot[10, 18], Knot[10, 24]} | 
In[13]:=  | {KnotDet[Knot[10, 24]], KnotSignature[Knot[10, 24]]} | 
Out[13]=    | {55, -2} | 
In[14]:=  | Jones[Knot[10, 24]][q]  | 
Out[14]=    |       -9   2    4    7    8    9    9    7    5
-2 + q   - -- + -- - -- + -- - -- + -- - -- + - + q
 
           8    7    6    5    4    3    2   q
 
           q    q    q    q    q    q    q  | 
In[15]:=  | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]  | 
Out[15]=    | {Knot[10, 24]} | 
In[16]:=  | A2Invariant[Knot[10, 24]][q]  | 
Out[16]=    |  -28    2     2     -18    2     -12    -10    -8    -6    -4   3     4
q    + --- - --- - q    - --- + q    - q    + q   + q   - q   + -- + q
 
       22    20           14                                    2
 
       q     q            q                                     q  | 
In[17]:=  | HOMFLYPT[Knot[10, 24]][a, z]  | 
Out[17]=    |      2    4    6    8    2      4  2    6  2    8  2    2  4
1 + a  - a  - a  + a  + z  - 3 a  z  - a  z  + a  z  - a  z  - 
 
    4  4    6  4
 
  2 a  z  - a  z  | 
In[18]:=  | Kauffman[Knot[10, 24]][a, z]  | 
Out[18]=    |      2    4    6    8      3        5        9        2      2  2
1 - a  - a  + a  + a  + 2 a  z + 4 a  z - 2 a  z - 2 z  + 2 a  z  + 
 
    4  2      6  2      8  2      10  2        3      5  3      7  3
 5 a  z  - 5 a  z  - 2 a  z  + 4 a   z  - 2 a z  - 7 a  z  - 2 a  z  + 
    9  3    4      2  4      4  4      6  4      8  4      10  4
 7 a  z  + z  - 3 a  z  - 5 a  z  + 6 a  z  + 3 a  z  - 4 a   z  + 
      5      3  5    5  5      7  5      9  5      2  6    4  6
 2 a z  - 2 a  z  + a  z  - 2 a  z  - 7 a  z  + 3 a  z  + a  z  - 
    6  6      8  6    10  6      3  7    5  7      9  7      4  8
 8 a  z  - 5 a  z  + a   z  + 3 a  z  + a  z  + 2 a  z  + 2 a  z  + 
    6  8      8  8    5  9    7  9
  4 a  z  + 2 a  z  + a  z  + a  z  | 
In[19]:=  | {Vassiliev[2][Knot[10, 24]], Vassiliev[3][Knot[10, 24]]} | 
Out[19]=    | {-2, 5} | 
In[20]:=  | Kh[Knot[10, 24]][q, t]  | 
Out[20]=    | 2    4     1        1        1        3        1        4        3
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 
3   q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
 
q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
   4        4       5       4       4       5      3      4     t
 ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + - + 
  11  4    9  4    9  3    7  3    7  2    5  2    5      3     q
 q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
        3  2
  q t + q  t  | 
In[21]:=  | ColouredJones[Knot[10, 24], 2][q]  | 
Out[21]=    |        -26    2     6     8     5    21    14    20    43    15
-10 + q    - --- + --- - --- - --- + --- - --- - --- + --- - --- - 
 
             25    23    22    21    20    19    18    17    16
            q     q     q     q     q     q     q     q     q
 42    60     7    61    65     3    67   56   9    53   36   9
 --- + --- - --- - --- + --- + --- - -- + -- + -- - -- + -- + -- - 
  15    14    13    12    11    10    9    8    7    6    5    4
 q     q     q     q     q     q     q    q    q    q    q    q
 29   16   4          2      3    4
 -- + -- + - + 5 q + q  - 2 q  + q
  3    2   q
  q    q  |