10 24
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 24's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X11,14,12,15 X3,13,4,12 X13,3,14,2 X5,16,6,17 X9,20,10,1 X19,6,20,7 X7,18,8,19 X17,8,18,9 X15,10,16,11 |
| Gauss code | -1, 4, -3, 1, -5, 7, -8, 9, -6, 10, -2, 3, -4, 2, -10, 5, -9, 8, -7, 6 |
| Dowker-Thistlethwaite code | 4 12 16 18 20 14 2 10 8 6 |
| Conway Notation | [3232] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{12, 6}, {7, 5}, {6, 11}, {1, 7}, {10, 12}, {11, 8}, {5, 9}, {4, 10}, {8, 3}, {2, 4}, {3, 1}, {9, 2}] |
[edit Notes on presentations of 10 24]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 24"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X11,14,12,15 X3,13,4,12 X13,3,14,2 X5,16,6,17 X9,20,10,1 X19,6,20,7 X7,18,8,19 X17,8,18,9 X15,10,16,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -5, 7, -8, 9, -6, 10, -2, 3, -4, 2, -10, 5, -9, 8, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 16 18 20 14 2 10 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3232] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{-1,-1,-2,1,-2,-2,-2,-3,2,4,-3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 6}, {7, 5}, {6, 11}, {1, 7}, {10, 12}, {11, 8}, {5, 9}, {4, 10}, {8, 3}, {2, 4}, {3, 1}, {9, 2}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t^2+14 t-19+14 t^{-1} -4 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 z^4-2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 55, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+5 q^{-1} -7 q^{-2} +9 q^{-3} -9 q^{-4} +8 q^{-5} -7 q^{-6} +4 q^{-7} -2 q^{-8} + q^{-9} } |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{255}-q^{253}-q^{251}+q^{249}+q^{243}-2 q^{241}-4 q^{239}+3 q^{237}+7 q^{235}+3 q^{233}+q^{231}-9 q^{229}-19 q^{227}-9 q^{225}+16 q^{223}+34 q^{221}+32 q^{219}-54 q^{215}-78 q^{213}-41 q^{211}+51 q^{209}+131 q^{207}+124 q^{205}+4 q^{203}-160 q^{201}-238 q^{199}-131 q^{197}+124 q^{195}+337 q^{193}+314 q^{191}+23 q^{189}-356 q^{187}-519 q^{185}-278 q^{183}+248 q^{181}+656 q^{179}+584 q^{177}+24 q^{175}-642 q^{173}-883 q^{171}-415 q^{169}+466 q^{167}+1042 q^{165}+835 q^{163}-83 q^{161}-1041 q^{159}-1211 q^{157}-365 q^{155}+842 q^{153}+1419 q^{151}+844 q^{149}-492 q^{147}-1474 q^{145}-1220 q^{143}+85 q^{141}+1347 q^{139}+1461 q^{137}+307 q^{135}-1120 q^{133}-1548 q^{131}-610 q^{129}+850 q^{127}+1511 q^{125}+789 q^{123}-596 q^{121}-1386 q^{119}-877 q^{117}+401 q^{115}+1226 q^{113}+887 q^{111}-251 q^{109}-1085 q^{107}-857 q^{105}+131 q^{103}+941 q^{101}+864 q^{99}+9 q^{97}-827 q^{95}-882 q^{93}-188 q^{91}+644 q^{89}+948 q^{87}+463 q^{85}-425 q^{83}-987 q^{81}-780 q^{79}+76 q^{77}+963 q^{75}+1133 q^{73}+351 q^{71}-815 q^{69}-1407 q^{67}-842 q^{65}+523 q^{63}+1541 q^{61}+1291 q^{59}-113 q^{57}-1493 q^{55}-1608 q^{53}-326 q^{51}+1241 q^{49}+1722 q^{47}+714 q^{45}-864 q^{43}-1630 q^{41}-945 q^{39}+465 q^{37}+1339 q^{35}+1011 q^{33}-112 q^{31}-985 q^{29}-917 q^{27}-106 q^{25}+632 q^{23}+713 q^{21}+214 q^{19}-340 q^{17}-498 q^{15}-225 q^{13}+163 q^{11}+300 q^9+169 q^7-41 q^5-162 q^3-117 q+2 q^{-1} +75 q^{-3} +63 q^{-5} +13 q^{-7} -27 q^{-9} -31 q^{-11} -10 q^{-13} +3 q^{-15} +12 q^{-17} +10 q^{-19} - q^{-21} - q^{-23} -5 q^{-27} -4 q^{-29} +5 q^{-31} +4 q^{-37} -2 q^{-39} -3 q^{-41} +2 q^{-43} - q^{-47} + q^{-49} - q^{-53} + q^{-55} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}+2 q^{22}-2 q^{20}-q^{18}-2 q^{14}+q^{12}-q^{10}+q^8+q^6-q^4+3 q^2+ q^{-4} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{76}-2 q^{74}+6 q^{72}-14 q^{70}+27 q^{68}-48 q^{66}+80 q^{64}-118 q^{62}+158 q^{60}-200 q^{58}+234 q^{56}-248 q^{54}+229 q^{52}-192 q^{50}+124 q^{48}-28 q^{46}-83 q^{44}+200 q^{42}-298 q^{40}+388 q^{38}-443 q^{36}+464 q^{34}-446 q^{32}+390 q^{30}-306 q^{28}+204 q^{26}-98 q^{24}-4 q^{22}+92 q^{20}-158 q^{18}+188 q^{16}-206 q^{14}+204 q^{12}-186 q^{10}+156 q^8-126 q^6+101 q^4-70 q^2+50-30 q^{-2} +21 q^{-4} -10 q^{-6} +6 q^{-8} -2 q^{-10} + q^{-12} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{72}+2 q^{64}-5 q^{60}-2 q^{58}+4 q^{56}+2 q^{54}-7 q^{52}-4 q^{50}+7 q^{48}+6 q^{46}-7 q^{44}-3 q^{42}+8 q^{40}+4 q^{38}-4 q^{36}-q^{34}+6 q^{32}-3 q^{28}+2 q^{26}-3 q^{24}-6 q^{22}+4 q^{20}+3 q^{18}-8 q^{16}-3 q^{14}+9 q^{12}+3 q^{10}-10 q^8-3 q^6+10 q^4+2 q^2-4+ q^{-2} +4 q^{-4} + q^{-6} - q^{-8} + q^{-12} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{58}+q^{56}+q^{54}-5 q^{52}+2 q^{50}+2 q^{48}-8 q^{46}+7 q^{44}+5 q^{42}-10 q^{40}+9 q^{38}+6 q^{36}-10 q^{34}+3 q^{32}+6 q^{30}-5 q^{28}-3 q^{26}+q^{24}+2 q^{22}-8 q^{20}-5 q^{18}+10 q^{16}-7 q^{14}-5 q^{12}+14 q^{10}-3 q^8-6 q^6+10 q^4-3+4 q^{-2} + q^{-4} - q^{-6} + q^{-8} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{37}+q^{33}+2 q^{29}-2 q^{27}-2 q^{23}-2 q^{19}-q^{13}+q^{11}+2 q^7-q^5+3 q^3+ q^{-1} + q^{-5} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{58}+3 q^{56}-5 q^{54}+7 q^{52}-10 q^{50}+12 q^{48}-12 q^{46}+13 q^{44}-11 q^{42}+8 q^{40}-3 q^{38}-4 q^{36}+10 q^{34}-17 q^{32}+20 q^{30}-25 q^{28}+25 q^{26}-25 q^{24}+20 q^{22}-14 q^{20}+9 q^{18}-2 q^{16}-3 q^{14}+9 q^{12}-12 q^{10}+13 q^8-12 q^6+12 q^4-8 q^2+7-4 q^{-2} +3 q^{-4} - q^{-6} + q^{-8} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{98}-q^{94}-q^{92}+2 q^{90}+3 q^{88}-2 q^{86}-6 q^{84}-2 q^{82}+7 q^{80}+6 q^{78}-7 q^{76}-11 q^{74}+q^{72}+14 q^{70}+7 q^{68}-11 q^{66}-11 q^{64}+6 q^{62}+15 q^{60}+2 q^{58}-11 q^{56}-5 q^{54}+8 q^{52}+6 q^{50}-5 q^{48}-7 q^{46}+4 q^{44}+7 q^{42}-3 q^{40}-10 q^{38}+9 q^{34}+q^{32}-11 q^{30}-7 q^{28}+9 q^{26}+9 q^{24}-6 q^{22}-13 q^{20}+q^{18}+14 q^{16}+7 q^{14}-8 q^{12}-10 q^{10}+2 q^8+11 q^6+4 q^4-4 q^2-5+ q^{-2} +4 q^{-4} +2 q^{-6} - q^{-8} - q^{-10} + q^{-14} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-q^{140}+3 q^{138}-5 q^{136}+4 q^{134}-4 q^{132}-q^{130}+9 q^{128}-18 q^{126}+25 q^{124}-24 q^{122}+13 q^{120}+7 q^{118}-31 q^{116}+51 q^{114}-56 q^{112}+44 q^{110}-14 q^{108}-26 q^{106}+59 q^{104}-68 q^{102}+59 q^{100}-24 q^{98}-12 q^{96}+40 q^{94}-50 q^{92}+35 q^{90}-4 q^{88}-27 q^{86}+46 q^{84}-39 q^{82}+11 q^{80}+27 q^{78}-62 q^{76}+75 q^{74}-67 q^{72}+29 q^{70}+17 q^{68}-67 q^{66}+94 q^{64}-90 q^{62}+58 q^{60}-10 q^{58}-39 q^{56}+64 q^{54}-67 q^{52}+42 q^{50}-7 q^{48}-24 q^{46}+38 q^{44}-27 q^{42}+q^{40}+29 q^{38}-46 q^{36}+44 q^{34}-24 q^{32}-7 q^{30}+35 q^{28}-53 q^{26}+59 q^{24}-41 q^{22}+19 q^{20}+7 q^{18}-28 q^{16}+38 q^{14}-37 q^{12}+30 q^{10}-14 q^8+q^6+10 q^4-15 q^2+15-11 q^{-2} +8 q^{-4} -2 q^{-6} - q^{-8} +3 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 24"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t^2+14 t-19+14 t^{-1} -4 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 z^4-2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 55, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+5 q^{-1} -7 q^{-2} +9 q^{-3} -9 q^{-4} +8 q^{-5} -7 q^{-6} +4 q^{-7} -2 q^{-8} + q^{-9} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_18,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 24"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t^2+14 t-19+14 t^{-1} -4 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+5 q^{-1} -7 q^{-2} +9 q^{-3} -9 q^{-4} +8 q^{-5} -7 q^{-6} +4 q^{-7} -2 q^{-8} + q^{-9} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_18,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-2, 5) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 24. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-2 q^3+q^2+5 q-10+4 q^{-1} +16 q^{-2} -29 q^{-3} +9 q^{-4} +36 q^{-5} -53 q^{-6} +9 q^{-7} +56 q^{-8} -67 q^{-9} +3 q^{-10} +65 q^{-11} -61 q^{-12} -7 q^{-13} +60 q^{-14} -42 q^{-15} -15 q^{-16} +43 q^{-17} -20 q^{-18} -14 q^{-19} +21 q^{-20} -5 q^{-21} -8 q^{-22} +6 q^{-23} -2 q^{-25} + q^{-26} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-2 q^8+q^7+q^6+2 q^5-7 q^4+2 q^3+8 q^2-19+9 q^{-1} +25 q^{-2} -8 q^{-3} -52 q^{-4} +26 q^{-5} +70 q^{-6} -27 q^{-7} -112 q^{-8} +39 q^{-9} +147 q^{-10} -34 q^{-11} -194 q^{-12} +33 q^{-13} +224 q^{-14} -13 q^{-15} -254 q^{-16} -3 q^{-17} +263 q^{-18} +28 q^{-19} -262 q^{-20} -52 q^{-21} +250 q^{-22} +72 q^{-23} -221 q^{-24} -99 q^{-25} +196 q^{-26} +109 q^{-27} -154 q^{-28} -124 q^{-29} +119 q^{-30} +120 q^{-31} -75 q^{-32} -116 q^{-33} +44 q^{-34} +96 q^{-35} -15 q^{-36} -73 q^{-37} -5 q^{-38} +52 q^{-39} +11 q^{-40} -28 q^{-41} -15 q^{-42} +16 q^{-43} +9 q^{-44} -5 q^{-45} -7 q^{-46} +3 q^{-47} +2 q^{-48} -2 q^{-50} + q^{-51} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-2 q^{15}+q^{14}+q^{13}-2 q^{12}+5 q^{11}-9 q^{10}+4 q^9+6 q^8-9 q^7+15 q^6-24 q^5+13 q^4+16 q^3-32 q^2+30 q-43+46 q^{-1} +37 q^{-2} -95 q^{-3} +27 q^{-4} -68 q^{-5} +146 q^{-6} +106 q^{-7} -222 q^{-8} -54 q^{-9} -127 q^{-10} +346 q^{-11} +286 q^{-12} -371 q^{-13} -249 q^{-14} -295 q^{-15} +589 q^{-16} +602 q^{-17} -435 q^{-18} -493 q^{-19} -586 q^{-20} +741 q^{-21} +942 q^{-22} -352 q^{-23} -633 q^{-24} -898 q^{-25} +718 q^{-26} +1151 q^{-27} -176 q^{-28} -604 q^{-29} -1102 q^{-30} +562 q^{-31} +1165 q^{-32} +12 q^{-33} -444 q^{-34} -1165 q^{-35} +339 q^{-36} +1028 q^{-37} +183 q^{-38} -214 q^{-39} -1112 q^{-40} +85 q^{-41} +786 q^{-42} +323 q^{-43} +49 q^{-44} -952 q^{-45} -154 q^{-46} +475 q^{-47} +373 q^{-48} +282 q^{-49} -673 q^{-50} -290 q^{-51} +151 q^{-52} +289 q^{-53} +398 q^{-54} -343 q^{-55} -264 q^{-56} -70 q^{-57} +118 q^{-58} +342 q^{-59} -89 q^{-60} -127 q^{-61} -125 q^{-62} -19 q^{-63} +190 q^{-64} +11 q^{-65} -12 q^{-66} -71 q^{-67} -53 q^{-68} +66 q^{-69} +11 q^{-70} +20 q^{-71} -18 q^{-72} -29 q^{-73} +16 q^{-74} - q^{-75} +10 q^{-76} - q^{-77} -9 q^{-78} +4 q^{-79} - q^{-80} +2 q^{-81} -2 q^{-83} + q^{-84} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




