T(8,5): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- This knot page was produced from [[Torus Knots Splice Template]] --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
{{Knot Navigation Links|ext=jpg}} |
{{Knot Navigation Links|ext=jpg}} |
||
⚫ | {{Torus Knot Page Header|m=8|n=5|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/27,28,-32,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-2,-5,9,10,11,12,-16,-19,-22,-25,29,30,31,32,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-1,5,6,7,8,-12,-15,-18,-21,25,26/goTop.html}} |
||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.jpg]] |
|||
⚫ | |||
{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 23: | Line 17: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=8.33333%><table cellpadding=0 cellspacing=0> |
<td width=8.33333%><table cellpadding=0 cellspacing=0> |
||
Line 51: | Line 41: | ||
<tr align=center><td>29</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>29</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>27</td><td bgcolor=red>1</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>27</td><td bgcolor=red>1</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 98: | Line 88: | ||
2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]</nowiki></pre></td></tr> |
2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[8, 5]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[8, 5]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 -13 -9 -8 |
||
-1 + |
-1 + Alternating - Alternating + Alternating - Alternating + |
||
⚫ | |||
-6 -5 -4 -3 |
|||
Alternating - Alternating + Alternating - Alternating + |
|||
1 3 4 |
|||
----------- + Alternating - Alternating + Alternating - |
|||
Alternating |
|||
⚫ | |||
Alternating + Alternating - Alternating + Alternating - |
|||
13 14 |
|||
Alternating + Alternating</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[8, 5]][z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[8, 5]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
||
Line 130: | Line 129: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 420}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 420}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[8, 5]][q, t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[8, 5]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 27 29 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 27 29 2 31 4 33 3 35 |
||
q + q + |
q + q + Alternating q + Alternating q + Alternating q + |
||
4 35 6 35 5 37 |
|||
Alternating q + Alternating q + Alternating q + |
|||
6 37 8 37 5 39 |
|||
Alternating q + Alternating q + Alternating q + |
|||
7 39 8 39 7 41 |
|||
Alternating q + 2 Alternating q + Alternating q + |
|||
9 41 10 41 9 43 |
|||
Alternating q + 2 Alternating q + 2 Alternating q + |
|||
12 43 11 45 12 45 |
|||
2 Alternating q + 3 Alternating q + 2 Alternating q + |
|||
13 47 14 47 12 49 |
|||
3 Alternating q + 2 Alternating q + Alternating q + |
|||
13 49 15 49 16 49 |
|||
2 Alternating q + Alternating q + Alternating q + |
|||
14 51 15 51 16 51 |
|||
Alternating q + 3 Alternating q + Alternating q + |
|||
16 53 17 53 18 53 |
|||
Alternating q + 2 Alternating q + Alternating q + |
|||
16 55 17 55 18 57 |
|||
Alternating q + Alternating q + Alternating q + |
|||
19 57 |
|||
Alternating q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
[[Category:Knot Page]] |
Revision as of 19:44, 28 August 2005
|
|
Visit [[[:Template:KnotilusURL]] T(8,5)'s page] at Knotilus!
Visit T(8,5)'s page at the original Knot Atlas! | |
T(8,5) Quick Notes |
T(8,5) Further Notes and Views
Knot presentations
Planar diagram presentation | X54,16,55,15 X29,17,30,16 X4,18,5,17 X43,19,44,18 X30,56,31,55 X5,57,6,56 X44,58,45,57 X19,59,20,58 X6,32,7,31 X45,33,46,32 X20,34,21,33 X59,35,60,34 X46,8,47,7 X21,9,22,8 X60,10,61,9 X35,11,36,10 X22,48,23,47 X61,49,62,48 X36,50,37,49 X11,51,12,50 X62,24,63,23 X37,25,38,24 X12,26,13,25 X51,27,52,26 X38,64,39,63 X13,1,14,64 X52,2,53,1 X27,3,28,2 X14,40,15,39 X53,41,54,40 X28,42,29,41 X3,43,4,42 |
Gauss code | 27, 28, -32, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -2, -5, 9, 10, 11, 12, -16, -19, -22, -25, 29, 30, 31, 32, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -30, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26 |
Dowker-Thistlethwaite code | 52 -42 -56 46 60 -50 -64 54 4 -58 -8 62 12 -2 -16 6 20 -10 -24 14 28 -18 -32 22 36 -26 -40 30 44 -34 -48 38 |
Conway Notation | Data:T(8,5)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(8,5)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, 20 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(8,5)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(8,5)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (63, 420) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 20 is the signature of T(8,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[8, 5]] |
Out[2]= | 32 |
In[3]:= | PD[TorusKnot[8, 5]] |
Out[3]= | PD[X[54, 16, 55, 15], X[29, 17, 30, 16], X[4, 18, 5, 17],X[43, 19, 44, 18], X[30, 56, 31, 55], X[5, 57, 6, 56], X[44, 58, 45, 57], X[19, 59, 20, 58], X[6, 32, 7, 31], X[45, 33, 46, 32], X[20, 34, 21, 33], X[59, 35, 60, 34], X[46, 8, 47, 7], X[21, 9, 22, 8], X[60, 10, 61, 9], X[35, 11, 36, 10], X[22, 48, 23, 47], X[61, 49, 62, 48], X[36, 50, 37, 49], X[11, 51, 12, 50], X[62, 24, 63, 23], X[37, 25, 38, 24], X[12, 26, 13, 25], X[51, 27, 52, 26], X[38, 64, 39, 63], X[13, 1, 14, 64], X[52, 2, 53, 1], X[27, 3, 28, 2], X[14, 40, 15, 39], X[53, 41, 54, 40],X[28, 42, 29, 41], X[3, 43, 4, 42]] |
In[4]:= | GaussCode[TorusKnot[8, 5]] |
Out[4]= | GaussCode[27, 28, -32, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29,1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -2, -5, 9, 10, 11, 12, -16, -19, -22, -25, 29, 30, 31, 32, -4, -7, -10, -13, 17,18, 19, 20, -24, -27, -30, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26] |
In[5]:= | BR[TorusKnot[8, 5]] |
Out[5]= | BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}] |
In[6]:= | alex = Alexander[TorusKnot[8, 5]][t] |
Out[6]= | -14 -13 -9 -8 |
In[7]:= | Conway[TorusKnot[8, 5]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[8, 5]], KnotSignature[TorusKnot[8, 5]]} |
Out[9]= | {5, 20} |
In[10]:= | J=Jones[TorusKnot[8, 5]][q] |
Out[10]= | 14 16 18 23 25 q + q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[8, 5]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[8, 5]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[8, 5]], Vassiliev[3][TorusKnot[8, 5]]} |
Out[14]= | {0, 420} |
In[15]:= | Kh[TorusKnot[8, 5]][q, t] |
Out[15]= | 27 29 2 31 4 33 3 35 |