T(16,3)

From Knot Atlas
Jump to navigationJump to search

T(8,5).jpg

T(8,5)

T(11,4).jpg

T(11,4)

T(16,3).jpg See other torus knots

Visit T(16,3) at Knotilus!

Edit T(16,3) Quick Notes


Edit T(16,3) Further Notes and Views


Knot presentations

Planar diagram presentation X41,63,42,62 X20,64,21,63 X21,43,22,42 X64,44,1,43 X1,23,2,22 X44,24,45,23 X45,3,46,2 X24,4,25,3 X25,47,26,46 X4,48,5,47 X5,27,6,26 X48,28,49,27 X49,7,50,6 X28,8,29,7 X29,51,30,50 X8,52,9,51 X9,31,10,30 X52,32,53,31 X53,11,54,10 X32,12,33,11 X33,55,34,54 X12,56,13,55 X13,35,14,34 X56,36,57,35 X57,15,58,14 X36,16,37,15 X37,59,38,58 X16,60,17,59 X17,39,18,38 X60,40,61,39 X61,19,62,18 X40,20,41,19
Gauss code -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -28, -29, 31, 32, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -30, -31, 1, 2, -4
Dowker-Thistlethwaite code 22 -24 26 -28 30 -32 34 -36 38 -40 42 -44 46 -48 50 -52 54 -56 58 -60 62 -64 2 -4 6 -8 10 -12 14 -16 18 -20
Braid presentation
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 22 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Data:T(16,3)/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:T(16,3)/Kauffman Polynomial
The A2 invariant Data:T(16,3)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(16,3)/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (85, 680)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(16,3)/V 2,1 Data:T(16,3)/V 3,1 Data:T(16,3)/V 4,1 Data:T(16,3)/V 4,2 Data:T(16,3)/V 4,3 Data:T(16,3)/V 5,1 Data:T(16,3)/V 5,2 Data:T(16,3)/V 5,3 Data:T(16,3)/V 5,4 Data:T(16,3)/V 6,1 Data:T(16,3)/V 6,2 Data:T(16,3)/V 6,3 Data:T(16,3)/V 6,4 Data:T(16,3)/V 6,5 Data:T(16,3)/V 6,6 Data:T(16,3)/V 6,7 Data:T(16,3)/V 6,8 Data:T(16,3)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 22 is the signature of T(16,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789101112131415161718192021χ
65                     1-1
63                     1-1
61                   11 0
59                 1  1 0
57                 11   0
55               11     0
53             1  1     0
51             11       0
49           11         0
47         1  1         0
45         11           0
43       11             0
41     1  1             0
39     11               0
37   11                 0
35    1                 1
33  1                   1
311                     1
291                     1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Torus Knot Page master template (intermediate).

See/edit the Torus Knot_Splice_Base (expert).

Back to the top.

T(8,5).jpg

T(8,5)

T(11,4).jpg

T(11,4)