Braid Representatives: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 7: Line 7:
<!--$$?BR$$-->
<!--$$?BR$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout1|n=1|s=BR}}
n = 1 |
BR stands for Braid Representative. BR[k,l] represents a braid on k strands with crossings l={i1,i2,...}, where a positive index i within the list l indicates a right-handed crossing between strand number i and strand number i+1 and a negative i indicates a left handed crossing between strands numbers |i| and |i|+1. Each ij can also be a list of non-adjacent (i.e., commuting) indices. BR also acts as a "type caster": BR[K] will return a braid whose closure is K if K is given in any format that KnotTheory` understands. BR[K] where K is is a named knot with up to 10 crossings returns a minimum braid representative for that knot.
n1 = 2 |
{{HelpAndAbout2|n=2|s=BR}}
in = <nowiki>BR</nowiki> |
The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See his article on the subject at arXiv:math.GT/0401051. Vogel's algorithm was implemented by Dan Carney in the summer of 2005 at the University of Toronto.
out= <nowiki>BR stands for Braid Representative. BR[k,l] represents a braid on k strands with crossings l={i1,i2,...}, where a positive index i within the list l indicates a right-handed crossing between strand number i and strand number i+1 and a negative i indicates a left handed crossing between strands numbers &#124;i&#124; and &#124;i&#124;+1. Each ij can also be a list of non-adjacent (i.e., commuting) indices. BR also acts as a "type caster": BR[K] will return a braid whose closure is K if K is given in any format that KnotTheory` understands. BR[K] where K is is a named knot with up to 10 crossings returns a minimum braid representative for that knot.</nowiki> |
{{HelpAndAbout3}}
about= <nowiki>The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See his article on the subject at arXiv:math.GT/0401051. Vogel's algorithm was implemented by Dan Carney in the summer of 2005 at the University of Toronto.</nowiki>}}
<!--END-->
<!--END-->


<!--$$?Mirror$$-->
<!--$$?Mirror$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{Help1|n=3|s=Mirror}}
n = 3 |
Mirror[br] return the mirror braid of br.
in = <nowiki>Mirror</nowiki> |
{{Help2}}
out= <nowiki>Mirror[br] return the mirror braid of br.</nowiki>}}
<!--END-->
<!--END-->


Line 25: Line 27:
<!--$$br1 = BR[2, {-1, -1, -1}];$$-->
<!--$$br1 = BR[2, {-1, -1, -1}];$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In1|n=4}}
{{In|
n = 4 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>br1 = BR[2, {-1, -1, -1}];</nowiki></pre>
in = <nowiki>br1 = BR[2, {-1, -1, -1}];</nowiki>}}
{{In2}}
<!--END-->
<!--END-->


Line 33: Line 35:
<!--$$PD[br1]$$-->
<!--$$PD[br1]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=5}}
{{InOut|
n = 5 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[br1]</nowiki></pre>
in = <nowiki>PD[br1]</nowiki> |
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki>PD[X[6, 3, 1, 4], X[4, 1, 5, 2], X[2, 5, 3, 6]]</nowiki></pre>
out= <nowiki>PD[X[6, 3, 1, 4], X[4, 1, 5, 2], X[2, 5, 3, 6]]</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Jones[br1][q]$$-->
<!--$$Jones[br1][q]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=6}}
{{InOut|
n = 6 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[br1][q]</nowiki></pre>
in = <nowiki>Jones[br1][q]</nowiki> |
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki> -4 -3 1
out= <nowiki> -4 -3 1
-q + q + -
-q + q + -
q</nowiki></pre>
q</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Mirror[br1]$$-->
<!--$$Mirror[br1]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=7}}
{{InOut|
n = 7 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Mirror[br1]</nowiki></pre>
{{InOut2|n=7}}<pre style="border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1}]</nowiki></pre>
in = <nowiki>Mirror[br1]</nowiki> |
out= <nowiki>BR[2, {1, 1, 1}]</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 61: Line 63:
<!--$$BR[TorusKnot[5, 4]]$$-->
<!--$$BR[TorusKnot[5, 4]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=8}}
{{InOut|
n = 8 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[5, 4]]</nowiki></pre>
in = <nowiki>BR[TorusKnot[5, 4]]</nowiki> |
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki>BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]</nowiki></pre>
out= <nowiki>BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 71: Line 73:
<!--$$br2 = BR[Knot[10, 1]]$$-->
<!--$$br2 = BR[Knot[10, 1]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=9}}
{{InOut|
n = 9 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>br2 = BR[Knot[10, 1]]</nowiki></pre>
in = <nowiki>br2 = BR[Knot[10, 1]]</nowiki> |
{{InOut2|n=9}}<pre style="border: 0px; padding: 0em"><nowiki>BR[6, {-1, -1, -2, 1, -2, -3, 2, -3, -4, 3, 5, -4, 5}]</nowiki></pre>
out= <nowiki>BR[6, {-1, -1, -2, 1, -2, -3, 2, -3, -4, 3, 5, -4, 5}]</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Show[BraidPlot[CollapseBraid[br2]]]$$-->
<!--$$Show[BraidPlot[CollapseBraid[br2]]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics1|n=10}}
n = 11 |
Show[BraidPlot[CollapseBraid[br2]]]
in = <nowiki>Show[BraidPlot[CollapseBraid[br2]]]</nowiki> |
{{Graphics2|n=10|imagename=Braid_Representatives_Out_10.gif}}
img= Braid_Representatives_Out_10.gif |
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->
<!--END-->



Revision as of 11:52, 30 August 2005


Every knot and every link is the closure of a braid. KnotTheory` can also represent knots and links as braid closures:

(For In[1] see Setup)

In[1]:= ?BR
BR stands for Braid Representative. BR[k,l] represents a braid on k strands with crossings l={i1,i2,...}, where a positive index i within the list l indicates a right-handed crossing between strand number i and strand number i+1 and a negative i indicates a left handed crossing between strands numbers |i| and |i|+1. Each ij can also be a list of non-adjacent (i.e., commuting) indices. BR also acts as a "type caster": BR[K] will return a braid whose closure is K if K is given in any format that KnotTheory` understands. BR[K] where K is is a named knot with up to 10 crossings returns a minimum braid representative for that knot.
In[2]:= BR::about
The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See his article on the subject at arXiv:math.GT/0401051. Vogel's algorithm was implemented by Dan Carney in the summer of 2005 at the University of Toronto.
In[3]:= ?Mirror
Mirror[br] return the mirror braid of br.

Thus for example,

In[4]:= br1 = BR[2, {-1, -1, -1}];


In[5]:= PD[br1]
Out[5]= PD[X[6, 3, 1, 4], X[4, 1, 5, 2], X[2, 5, 3, 6]]
In[6]:= Jones[br1][q]
Out[6]= -4 -3 1 -q + q + - q
In[7]:= Mirror[br1]
Out[7]= BR[2, {1, 1, 1}]

KnotTheory` has the braid representatives of some knots and links pre-loaded. Thus for example,

In[8]:= BR[TorusKnot[5, 4]]
Out[8]= BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]

The minimum braid representative of a given knot is a braid representative for that knot which has a minimal number of braid crossings and within those braid representatives with a minimal number of braid crossings, it has a minimal number of strands (full details are in [Gittings]). Thomas Gittings kindly provided us the minimum braid representatives for all knots with up to 10 crossings. Thus for example, the minimum braid representative for the knot Template:10 1 has length (number of crossings) 13 and width 6 (number of strands, also see Invariants from Braid Theory):

In[9]:= br2 = BR[Knot[10, 1]]
Out[9]= BR[6, {-1, -1, -2, 1, -2, -3, 2, -3, -4, 3, 5, -4, 5}]
In[11]:= Show[BraidPlot[CollapseBraid[br2]]]
Braid Representatives Out 10.gif
Out[11]= -Graphics-

(Check Drawing Braids for information about the command BraidPlot and the related command CollapseBraid.)

[Gittings] ^  T. A. Gittings, Minimum braids: a complete invariant of knots and links, arXiv:math.GT/0401051.