Three Dimensional Invariants: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
<!--$$?SymmetryType$$--> |
<!--$$?SymmetryType$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{HelpAndAbout1|n= |
{{HelpAndAbout1|n=1|s=SymmetryType}} |
||
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral. |
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral. |
||
{{HelpAndAbout2|n= |
{{HelpAndAbout2|n=2|s=SymmetryType}} |
||
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
||
{{HelpAndAbout3}} |
{{HelpAndAbout3}} |
||
Line 15: | Line 15: | ||
<!--$$?UnknottingNumber$$--> |
<!--$$?UnknottingNumber$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{HelpAndAbout1|n= |
{{HelpAndAbout1|n=3|s=UnknottingNumber}} |
||
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
||
{{HelpAndAbout2|n= |
{{HelpAndAbout2|n=4|s=UnknottingNumber}} |
||
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
||
{{HelpAndAbout3}} |
{{HelpAndAbout3}} |
||
Line 25: | Line 25: | ||
<!--$UH = Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer];$--><!--END--> |
<!--$UH = Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer];$--><!--END--> |
||
Of the <!--$UH /. _u -> 1$--><!-- |
Of the <!--$UH /. _u -> 1$--><!--Robot Land, no human edits to "END"-->512<!--END--> knots whose unknotting number is known to <code>KnotTheory`</code>, <!--$Coefficient[UH, u[1]]$--><!--Robot Land, no human edits to "END"-->197<!--END--> have unknotting number 1, <!--$Coefficient[UH, u[2]]$--><!--Robot Land, no human edits to "END"-->247<!--END--> have unknotting number 2, <!--$Coefficient[UH, u[3]]$--><!--Robot Land, no human edits to "END"-->54<!--END--> have unknotting number 3, <!--$Coefficient[UH, u[4]]$--><!--Robot Land, no human edits to "END"-->12<!--END--> have unknotting number 4 and <!--$Coefficient[UH, u[5]]$--><!--Robot Land, no human edits to "END"-->1<!--END--> has unknotting number 5: |
||
<!--$$Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]$$--> |
<!--$$Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=5}} |
||
Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki>u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
There are <!--$Length[Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &] |
There are <!--$Length[Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &] |
||
]$--><!-- |
]$--><!--Robot Land, no human edits to "END"-->4<!--END--> knots with up to 9 crossings whose unknotting number is unknown: |
||
<!--$$Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]$$--> |
<!--$$Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=6}} |
||
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
<!--$$?ThreeGenus$$--> |
<!--$$?ThreeGenus$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{HelpAndAbout1|n= |
{{HelpAndAbout1|n=7|s=ThreeGenus}} |
||
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`. |
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`. |
||
{{HelpAndAbout2|n= |
{{HelpAndAbout2|n=8|s=ThreeGenus}} |
||
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
||
{{HelpAndAbout3}} |
{{HelpAndAbout3}} |
||
Line 58: | Line 58: | ||
<!--$$?BridgeIndex$$--> |
<!--$$?BridgeIndex$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{HelpAndAbout1|n= |
{{HelpAndAbout1|n=9|s=BridgeIndex}} |
||
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`. |
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`. |
||
{{HelpAndAbout2|n= |
{{HelpAndAbout2|n=10|s=BridgeIndex}} |
||
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
||
{{HelpAndAbout3}} |
{{HelpAndAbout3}} |
||
Line 69: | Line 69: | ||
<!--$$Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]$$--> |
<!--$$Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=11}} |
||
Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=11}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7], |
||
Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], |
Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], |
||
Line 85: | Line 85: | ||
<!--$$?SuperBridgeIndex$$--> |
<!--$$?SuperBridgeIndex$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{HelpAndAbout1|n= |
{{HelpAndAbout1|n=12|s=SuperBridgeIndex}} |
||
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
||
{{HelpAndAbout2|n= |
{{HelpAndAbout2|n=13|s=SuperBridgeIndex}} |
||
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
||
{{HelpAndAbout3}} |
{{HelpAndAbout3}} |
||
Line 94: | Line 94: | ||
<!--$$?NakanishiIndex$$--> |
<!--$$?NakanishiIndex$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{HelpAndAbout1|n= |
{{HelpAndAbout1|n=14|s=NakanishiIndex}} |
||
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`. |
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`. |
||
{{HelpAndAbout2|n= |
{{HelpAndAbout2|n=15|s=NakanishiIndex}} |
||
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
||
{{HelpAndAbout3}} |
{{HelpAndAbout3}} |
||
Line 103: | Line 103: | ||
<!--$$Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]$$--> |
<!--$$Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{In1|n= |
{{In1|n=16}} |
||
Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]</nowiki></pre> |
||
{{In2}} |
{{In2}} |
||
<!--END--> |
<!--END--> |
||
<!--$$Profile[Knot[9,24]]$$--> |
<!--$$Profile[Knot[9,24]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=17}} |
||
Profile[Knot[9,24]] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Profile[Knot[9,24]]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=17}}<pre style="border: 0px; padding: 0em"><nowiki>Profile[Reversible, 1, 3, 3, {4, 6}, 1]</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
<!--$$Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]$$--> |
<!--$$Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=18}} |
||
Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=18}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
<!--$$Alexander[#][t]& /@ Ks$$--> |
<!--$$Alexander[#][t]& /@ Ks$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=19}} |
||
Alexander[#][t]& /@ Ks |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[#][t]& /@ Ks</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=19}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3 -3 5 12 2 3 |
||
{13 - t + -- - -- - 10 t + 5 t - t , -15 + t - -- + -- + 12 t - 5 t + t , |
{13 - t + -- - -- - 10 t + 5 t - t , -15 + t - -- + -- + 12 t - 5 t + t , |
||
2 t 2 t |
2 t 2 t |
Revision as of 19:43, 27 August 2005
(For In[1] see Setup)
In[1]:= ?SymmetryType
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral. |
In[2]:= SymmetryType::about
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .
In[3]:= ?UnknottingNumber
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
In[4]:= UnknottingNumber::about
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
Of the 512 knots whose unknotting number is known to KnotTheory`
, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:
In[5]:= |
Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer] |
Out[5]= | u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5] |
There are 4 knots with up to 9 crossings whose unknotting number is unknown:
In[6]:= |
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &] |
Out[6]= | {Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]} |
In[7]:= ?ThreeGenus
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`. |
In[8]:= ThreeGenus::about
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .
In[9]:= ?BridgeIndex
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`. |
In[10]:= BridgeIndex::about
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
In[11]:= |
Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &] |
Out[11]= | {Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15], Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]} |
The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
In[12]:= ?SuperBridgeIndex
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
In[13]:= SuperBridgeIndex::about
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
In[14]:= ?NakanishiIndex
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`. |
In[15]:= NakanishiIndex::about
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
In[16]:= |
Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]] |
In[17]:= |
Profile[Knot[9,24]] |
Out[17]= | Profile[Reversible, 1, 3, 3, {4, 6}, 1] |
In[18]:= |
Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&] |
Out[18]= | {Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]} |
In[19]:= |
Alexander[#][t]& /@ Ks |
Out[19]= | -3 5 10 2 3 -3 5 12 2 3 {13 - t + -- - -- - 10 t + 5 t - t , -15 + t - -- + -- + 12 t - 5 t + t , 2 t 2 t t t -3 5 12 2 3 -3 6 16 2 3 17 - t + -- - -- - 12 t + 5 t - t , 23 - t + -- - -- - 16 t + 6 t - t } 2 t 2 t t t |