Three Dimensional Invariants: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 5: | Line 5: | ||
<!--$$?SymmetryType$$--> |
<!--$$?SymmetryType$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
|||
{{HelpAndAbout1|n=1|s=SymmetryType}} |
|||
n = 1 | |
|||
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral. |
|||
n1 = 2 | |
|||
{{HelpAndAbout2|n=2|s=SymmetryType}} |
|||
in = <nowiki>SymmetryType</nowiki> | |
|||
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
|||
out= <nowiki>SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.</nowiki> | |
|||
{{HelpAndAbout3}} |
|||
about= <nowiki>The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 16: | Line 17: | ||
<!--$$?UnknottingNumber$$--> |
<!--$$?UnknottingNumber$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
|||
{{HelpAndAbout1|n=3|s=UnknottingNumber}} |
|||
n = 3 | |
|||
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
|||
n1 = 4 | |
|||
{{HelpAndAbout2|n=4|s=UnknottingNumber}} |
|||
in = <nowiki>UnknottingNumber</nowiki> | |
|||
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
|||
out= <nowiki>UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.</nowiki> | |
|||
{{HelpAndAbout3}} |
|||
about= <nowiki>The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 29: | Line 31: | ||
<!--$$Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]$$--> |
<!--$$Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{InOut| |
||
n = 5 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]</nowiki></pre> |
|||
in = <nowiki>Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]</nowiki> | |
|||
out= <nowiki>u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
Line 40: | Line 42: | ||
<!--$$Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]$$--> |
<!--$$Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{InOut| |
||
n = 6 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]</nowiki></pre> |
|||
in = <nowiki>Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]</nowiki> | |
|||
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}</nowiki></pre> |
|||
out= <nowiki>{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$?ThreeGenus$$--> |
<!--$$?ThreeGenus$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
|||
{{HelpAndAbout1|n=7|s=ThreeGenus}} |
|||
n = 7 | |
|||
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`. |
|||
n1 = 8 | |
|||
{{HelpAndAbout2|n=8|s=ThreeGenus}} |
|||
in = <nowiki>ThreeGenus</nowiki> | |
|||
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
|||
out= <nowiki>ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`.</nowiki> | |
|||
{{HelpAndAbout3}} |
|||
about= <nowiki>The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 59: | Line 62: | ||
<!--$$?BridgeIndex$$--> |
<!--$$?BridgeIndex$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
|||
{{HelpAndAbout1|n=9|s=BridgeIndex}} |
|||
n = 9 | |
|||
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`. |
|||
n1 = 10 | |
|||
{{HelpAndAbout2|n=10|s=BridgeIndex}} |
|||
in = <nowiki>BridgeIndex</nowiki> | |
|||
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
|||
out= <nowiki>BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.</nowiki> | |
|||
{{HelpAndAbout3}} |
|||
about= <nowiki>The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 70: | Line 74: | ||
<!--$$Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]$$--> |
<!--$$Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
{{InOut1|n=11}} |
|||
n = 11 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]</nowiki></pre> |
|||
in = <nowiki>Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]</nowiki> | |
|||
{{InOut2|n=11}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7], |
|||
out= <nowiki>{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], |
|||
Knot[9, |
Knot[9, 6], Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10], |
||
Knot[9, |
Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15], |
||
Knot[9, |
Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], |
||
{{InOut3}} |
|||
Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]}</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 86: | Line 92: | ||
<!--$$?SuperBridgeIndex$$--> |
<!--$$?SuperBridgeIndex$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
|||
{{HelpAndAbout1|n=12|s=SuperBridgeIndex}} |
|||
n = 12 | |
|||
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
|||
n1 = 13 | |
|||
{{HelpAndAbout2|n=13|s=SuperBridgeIndex}} |
|||
in = <nowiki>SuperBridgeIndex</nowiki> | |
|||
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
|||
out= <nowiki>SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.</nowiki> | |
|||
{{HelpAndAbout3}} |
|||
about= <nowiki>The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$?NakanishiIndex$$--> |
<!--$$?NakanishiIndex$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
|||
{{HelpAndAbout1|n=14|s=NakanishiIndex}} |
|||
n = 14 | |
|||
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`. |
|||
n1 = 15 | |
|||
{{HelpAndAbout2|n=15|s=NakanishiIndex}} |
|||
in = <nowiki>NakanishiIndex</nowiki> | |
|||
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
|||
out= <nowiki>NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.</nowiki> | |
|||
{{HelpAndAbout3}} |
|||
about= <nowiki>The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]$$--> |
<!--$$Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{In| |
||
n = 16 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]</nowiki></pre> |
|||
in = <nowiki>Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]</nowiki>}} |
|||
{{In2}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Profile[Knot[9,24]]$$--> |
<!--$$Profile[Knot[9,24]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
{{InOut1|n=17}} |
|||
n = 17 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Profile[Knot[9,24]]</nowiki></pre> |
|||
in = <nowiki>Profile[Knot[9,24]]</nowiki> | |
|||
out= <nowiki>Profile[Reversible, 1, 3, 3, {4, 6}, 1]</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]$$--> |
<!--$$Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
{{InOut1|n=18}} |
|||
n = 18 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]</nowiki></pre> |
|||
in = <nowiki>Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]</nowiki> | |
|||
out= <nowiki>{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Alexander[#][t]& /@ Ks$$--> |
<!--$$Alexander[#][t]& /@ Ks$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
{{InOut1|n=19}} |
|||
n = 19 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[#][t]& /@ Ks</nowiki></pre> |
|||
in = <nowiki>Alexander[#][t]& /@ Ks</nowiki> | |
|||
{{InOut2|n=19}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3 -3 5 12 2 3 |
|||
out= <nowiki> -3 5 10 2 3 |
|||
{13 - t + -- - -- - 10 t + 5 t - t , |
|||
2 t |
|||
t |
|||
-3 5 12 2 3 |
|||
-15 + t - -- + -- + 12 t - 5 t + t , |
|||
2 t |
|||
t |
|||
-3 5 12 2 3 |
|||
17 - t + -- - -- - 12 t + 5 t - t , |
|||
2 t |
|||
t |
|||
-3 6 16 2 3 |
|||
23 - t + -- - -- - 16 t + 6 t - t } |
|||
2 t |
|||
t</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
Revision as of 12:12, 30 August 2005
(For In[1] see Setup)
|
|
The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .
|
|
Of the 512 knots whose unknotting number is known to KnotTheory`
, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:
In[5]:=
|
Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]
|
Out[5]=
|
u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]
|
There are 4 knots with up to 9 crossings whose unknotting number is unknown:
In[6]:=
|
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
|
Out[6]=
|
{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}
|
|
|
The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .
|
|
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
In[11]:=
|
Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]
|
Out[11]=
|
{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5],
Knot[9, 6], Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10],
Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15],
Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21],
Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]}
|
The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
|
|
|
|
In[16]:=
|
Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]
|
In[17]:=
|
Profile[Knot[9,24]]
|
Out[17]=
|
Profile[Reversible, 1, 3, 3, {4, 6}, 1]
|
In[18]:=
|
Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]
|
Out[18]=
|
{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}
|
In[19]:=
|
Alexander[#][t]& /@ Ks
|
Out[19]=
|
-3 5 10 2 3
{13 - t + -- - -- - 10 t + 5 t - t ,
2 t
t
-3 5 12 2 3
-15 + t - -- + -- + 12 t - 5 t + t ,
2 t
t
-3 5 12 2 3
17 - t + -- - -- - 12 t + 5 t - t ,
2 t
t
-3 6 16 2 3
23 - t + -- - -- - 16 t + 6 t - t }
2 t
t
|