Three Dimensional Invariants: Difference between revisions
No edit summary |
No edit summary |
||
Line 25: | Line 25: | ||
<!--$UH = Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer];$--><!--END--> |
<!--$UH = Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer];$--><!--END--> |
||
⚫ | Of the <!--$UH /. _u -> 1$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->512<!--END--> knots whose unknotting number is known to <code>KnotTheory`</code>, <!--$Coefficient[UH, u[1]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->197<!--END--> have unknotting number 1, <!--$Coefficient[UH, u[2]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->247<!--END--> have unknotting number 2, <!--$Coefficient[UH, u[3]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->54<!--END--> have unknotting number 3, <!--$Coefficient[UH, u[4]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->12<!--END--> have unknotting number 4 and <!--$Coefficient[UH, u[5]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->1<!--END--> has unknotting number 5: |
||
{{5_1 views}} |
|||
<*UH /. _u -> 1*> |
|||
512 |
|||
<splice context="KnotTheory`">Jones[Knot[3,1]]]<mid/>512</splice> |
|||
⚫ | Of the <!--$UH /. _u -> 1$-->512<!--END--> knots whose unknotting number is known to <code>KnotTheory`</code>, <!--$Coefficient[UH, u[1]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->197<!--END--> have unknotting number 1, <!--$Coefficient[UH, u[2]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->247<!--END--> have unknotting number 2, <!--$Coefficient[UH, u[3]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->54<!--END--> have unknotting number 3, <!--$Coefficient[UH, u[4]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->12<!--END--> have unknotting number 4 and <!--$Coefficient[UH, u[5]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->1<!--END--> has unknotting number 5: |
||
<!--$$Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]$$--> |
<!--$$Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]$$--> |
Revision as of 09:14, 25 August 2005
(For In[1] see Setup)
In[2]:= ?SymmetryType
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral. |
In[3]:= SymmetryType::about
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .
In[4]:= ?UnknottingNumber
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
In[5]:= UnknottingNumber::about
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
Of the 512 knots whose unknotting number is known to KnotTheory`
, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:
In[6]:= |
Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer] |
Out[6]= | u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5] |
There are 4 knots with up to 9 crossings whose unknotting number is unknown:
In[7]:= |
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &] |
Out[7]= | {Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]} |
In[8]:= ?ThreeGenus
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`. |
In[9]:= ThreeGenus::about
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .
In[10]:= ?BridgeIndex
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`. |
In[11]:= BridgeIndex::about
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
In[12]:= |
Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &] |
Out[12]= | {Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15], Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]} |
The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
In[13]:= ?SuperBridgeIndex
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
In[14]:= SuperBridgeIndex::about
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
In[15]:= ?NakanishiIndex
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`. |
In[16]:= NakanishiIndex::about
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
In[17]:= |
Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]] |
In[18]:= |
Profile[Knot[9,24]] |
Out[18]= | Profile[Reversible, 1, 3, 3, {4, 6}, 1] |
In[19]:= |
Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&] |
Out[19]= | {Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]} |
In[20]:= |
Alexander[#][t]& /@ Ks |
Out[20]= | -3 5 10 2 3 -3 5 12 2 3 {13 - t + -- - -- - 10 t + 5 t - t , -15 + t - -- + -- + 12 t - 5 t + t , 2 t 2 t t t -3 5 12 2 3 -3 6 16 2 3 17 - t + -- - -- - 12 t + 5 t - t , 23 - t + -- - -- - 16 t + 6 t - t } 2 t 2 t t t |