T(7,5): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 5: Line 5:
<span id="top"></span>
<span id="top"></span>


{{Knot Navigation Links|prev=T(27,2).jpg|next=T(14,3).jpg}}
{{Knot Navigation Links|prev=T(27,2)|next=T(14,3)|imageext=jpg}}


{| align=left
Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-25,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-3,-6,-9,13,14,15,16,-20,-23,-26,-1,5,6,7,8,-12,-15,-18,-21,25,26,27,28,-4,-7,-10,-13,17,18,19,20,-24,-27,-2,-5,9,10,11,12,-16,-19,-22/goTop.html T(7,5)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!
|- valign=top
|[[Image:T(7,5).jpg]]
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-25,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-3,-6,-9,13,14,15,16,-20,-23,-26,-1,5,6,7,8,-12,-15,-18,-21,25,26,27,28,-4,-7,-10,-13,17,18,19,20,-24,-27,-2,-5,9,10,11,12,-16,-19,-22/goTop.html T(7,5)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!


Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/7.5.html T(7,5)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/7.5.html T(7,5)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!

{{:T(7,5) Quick Notes}}
|}

<br style="clear:both" />

{{:T(7,5) Further Notes and Views}}


===Knot presentations===
===Knot presentations===
Line 23: Line 33:
|style="padding-left: 1em;" | 34 -48 -38 52 42 -56 -46 4 50 -8 -54 12 2 -16 -6 20 10 -24 -14 28 18 -32 -22 36 26 -40 -30 44
|style="padding-left: 1em;" | 34 -48 -38 52 42 -56 -46 4 50 -8 -54 12 2 -16 -6 20 10 -24 -14 28 18 -32 -22 36 26 -40 -30 44
|}
|}

===Polynomial invariants===


{{Polynomial Invariants|name=T(7,5)}}
{{Polynomial Invariants|name=T(7,5)}}
Line 32: Line 40:
|-
|-
|'''V<sub>2</sub> and V<sub>3</sub>'''
|'''V<sub>2</sub> and V<sub>3</sub>'''
|style="padding-left: 1em;" | {0, 280})
|style="padding-left: 1em;" | {0, 280}
|}
|}


===[[Khovanov Homology]]===
[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>16 is the signature of T(7,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>16 is the signature of T(7,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.


<center><table border=1>
<center><table border=1>
Line 71: Line 81:
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[7, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[7, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>28</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>28</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[7, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[7, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[25, 3, 26, 2], X[48, 4, 49, 3], X[15, 5, 16, 4], X[38, 6, 39, 5],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[25, 3, 26, 2], X[48, 4, 49, 3], X[15, 5, 16, 4], X[38, 6, 39, 5],
X[49, 27, 50, 26], X[16, 28, 17, 27], X[39, 29, 40, 28],
X[49, 27, 50, 26], X[16, 28, 17, 27], X[39, 29, 40, 28],
Line 91: Line 101:
X[24, 36, 25, 35], X[47, 37, 48, 36], X[14, 38, 15, 37]]</nowiki></pre></td></tr>
X[24, 36, 25, 35], X[47, 37, 48, 36], X[14, 38, 15, 37]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[7, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[7, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-25, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -3,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-25, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -3,
-6, -9, 13, 14, 15, 16, -20, -23, -26, -1, 5, 6, 7, 8, -12, -15, -18,
-6, -9, 13, 14, 15, 16, -20, -23, -26, -1, 5, 6, 7, 8, -12, -15, -18,
Line 99: Line 109:
-5, 9, 10, 11, 12, -16, -19, -22]</nowiki></pre></td></tr>
-5, 9, 10, 11, 12, -16, -19, -22]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[7, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[7, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1,
2, 3, 4, 1, 2, 3, 4}]</nowiki></pre></td></tr>
2, 3, 4, 1, 2, 3, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[7, 5]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[7, 5]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -11 -7 -6 -5 -4 -2 1 2 4 5
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -11 -7 -6 -5 -4 -2 1 2 4 5
1 + t - t + t - t + t - t + t - - - t + t - t + t -
1 + t - t + t - t + t - t + t - - - t + t - t + t -
t
t
Line 110: Line 120:
t + t - t + t</nowiki></pre></td></tr>
t + t - t + t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[7, 5]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[7, 5]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
1 + 48 z + 628 z + 3498 z + 10032 z + 16511 z + 16757 z +
1 + 48 z + 628 z + 3498 z + 10032 z + 16511 z + 16757 z +
Line 116: Line 126:
10949 z + 4692 z + 1311 z + 230 z + 23 z + z</nowiki></pre></td></tr>
10949 z + 4692 z + 1311 z + 230 z + 23 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[7, 5]], KnotSignature[TorusKnot[7, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[7, 5]], KnotSignature[TorusKnot[7, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 16}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 16}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[7, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[7, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 12 14 16 20 22
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 12 14 16 20 22
q + q + q - q - q</nowiki></pre></td></tr>
q + q + q - q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>


<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[7, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[7, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[7, 5]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[7, 5]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[7, 5]], Vassiliev[3][TorusKnot[7, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[7, 5]], Vassiliev[3][TorusKnot[7, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 280}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 280}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[7, 5]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[7, 5]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 23 25 27 2 31 3 29 4 31 4 33 5 35 5
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 23 25 27 2 31 3 29 4 31 4 33 5 35 5
q + q + q t + q t + q t + q t + q t + q t +
q + q + q t + q t + q t + q t + q t + q t +

Revision as of 21:46, 26 August 2005


[[Image:T(27,2).{{{ext}}}|80px|link=T(27,2)]]

T(27,2)

[[Image:T(14,3).{{{ext}}}|80px|link=T(14,3)]]

T(14,3)

T(7,5).jpg Visit T(7,5)'s page at Knotilus!

Visit T(7,5)'s page at the original Knot Atlas!

T(7,5) Quick Notes


T(7,5) Further Notes and Views

Knot presentations

Planar diagram presentation X25,3,26,2 X48,4,49,3 X15,5,16,4 X38,6,39,5 X49,27,50,26 X16,28,17,27 X39,29,40,28 X6,30,7,29 X17,51,18,50 X40,52,41,51 X7,53,8,52 X30,54,31,53 X41,19,42,18 X8,20,9,19 X31,21,32,20 X54,22,55,21 X9,43,10,42 X32,44,33,43 X55,45,56,44 X22,46,23,45 X33,11,34,10 X56,12,1,11 X23,13,24,12 X46,14,47,13 X1,35,2,34 X24,36,25,35 X47,37,48,36 X14,38,15,37
Gauss code {-25, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27, 28, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -2, -5, 9, 10, 11, 12, -16, -19, -22}
Dowker-Thistlethwaite code 34 -48 -38 52 42 -56 -46 4 50 -8 -54 12 2 -16 -6 20 10 -24 -14 28 18 -32 -22 36 26 -40 -30 44

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 16 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Data:T(7,5)/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:T(7,5)/Kauffman Polynomial
The A2 invariant Data:T(7,5)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(7,5)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 280}

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(7,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
01234567891011121314151617χ
51                110
49                  0
47              121 0
45            12    -1
43             21   -1
41           32     -1
39         2  1     -1
37       1 12       0
35     1 12         0
33     11 1         1
31   11 1           1
29    1             1
27  1               1
251                 1
231                 1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[7, 5]]
Out[2]=  
28
In[3]:=
PD[TorusKnot[7, 5]]
Out[3]=  
PD[X[25, 3, 26, 2], X[48, 4, 49, 3], X[15, 5, 16, 4], X[38, 6, 39, 5], 
 X[49, 27, 50, 26], X[16, 28, 17, 27], X[39, 29, 40, 28], 

 X[6, 30, 7, 29], X[17, 51, 18, 50], X[40, 52, 41, 51], 

 X[7, 53, 8, 52], X[30, 54, 31, 53], X[41, 19, 42, 18], 

 X[8, 20, 9, 19], X[31, 21, 32, 20], X[54, 22, 55, 21], 

 X[9, 43, 10, 42], X[32, 44, 33, 43], X[55, 45, 56, 44], 

 X[22, 46, 23, 45], X[33, 11, 34, 10], X[56, 12, 1, 11], 

 X[23, 13, 24, 12], X[46, 14, 47, 13], X[1, 35, 2, 34], 

X[24, 36, 25, 35], X[47, 37, 48, 36], X[14, 38, 15, 37]]
In[4]:=
GaussCode[TorusKnot[7, 5]]
Out[4]=  
GaussCode[-25, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -3, 
 -6, -9, 13, 14, 15, 16, -20, -23, -26, -1, 5, 6, 7, 8, -12, -15, -18, 

 -21, 25, 26, 27, 28, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -2, 

-5, 9, 10, 11, 12, -16, -19, -22]
In[5]:=
BR[TorusKnot[7, 5]]
Out[5]=  
BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 
   2, 3, 4, 1, 2, 3, 4}]
In[6]:=
alex = Alexander[TorusKnot[7, 5]][t]
Out[6]=  
     -12    -11    -7    -6    -5    -4    -2   1        2    4    5

1 + t - t + t - t + t - t + t - - - t + t - t + t -

                                               t

  6    7    11    12
t + t - t + t
In[7]:=
Conway[TorusKnot[7, 5]][z]
Out[7]=  
        2        4         6          8          10          12

1 + 48 z + 628 z + 3498 z + 10032 z + 16511 z + 16757 z +

        14         16         18        20       22    24
10949 z + 4692 z + 1311 z + 230 z + 23 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[7, 5]], KnotSignature[TorusKnot[7, 5]]}
Out[9]=  
{1, 16}
In[10]:=
J=Jones[TorusKnot[7, 5]][q]
Out[10]=  
 12    14    16    20    22
q   + q   + q   - q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[7, 5]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[7, 5]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[7, 5]], Vassiliev[3][TorusKnot[7, 5]]}
Out[14]=  
{0, 280}
In[15]:=
Kh[TorusKnot[7, 5]][q, t]
Out[15]=  
 23    25    27  2    31  3    29  4    31  4    33  5    35  5

q + q + q t + q t + q t + q t + q t + q t +

  31  6    33  6    35  7    37  7    33  8      35  8    37  9
 q   t  + q   t  + q   t  + q   t  + q   t  + 2 q   t  + q   t  + 

    39  9      37  10      41  11    39  12      41  12    45  12
 2 q   t  + 2 q   t   + 3 q   t   + q   t   + 2 q   t   + q   t   + 

    43  13      45  13    43  14    47  14      47  15    47  16
 2 q   t   + 2 q   t   + q   t   + q   t   + 2 q   t   + q   t   + 

  51  16    51  17
q t + q t