T(27,2)
From Knot Atlas
Jump to navigationJump to search
|
|
![]() |
See other torus knots |
Edit T(27,2) Quick Notes
|
Edit T(27,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X21,49,22,48 X49,23,50,22 X23,51,24,50 X51,25,52,24 X25,53,26,52 X53,27,54,26 X27,1,28,54 X1,29,2,28 X29,3,30,2 X3,31,4,30 X31,5,32,4 X5,33,6,32 X33,7,34,6 X7,35,8,34 X35,9,36,8 X9,37,10,36 X37,11,38,10 X11,39,12,38 X39,13,40,12 X13,41,14,40 X41,15,42,14 X15,43,16,42 X43,17,44,16 X17,45,18,44 X45,19,46,18 X19,47,20,46 X47,21,48,20 |
Gauss code | -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 1, -2, 3, -4, 5, -6, 7 |
Dowker-Thistlethwaite code | 28 30 32 34 36 38 40 42 44 46 48 50 52 54 2 4 6 8 10 12 14 16 18 20 22 24 26 |
Braid presentation |
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (91, 819) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 26 is the signature of T(27,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|