T(27,2)

From Knot Atlas
Jump to navigationJump to search

T(9,4).jpg

T(9,4)

T(7,5).jpg

T(7,5)

T(27,2).jpg See other torus knots

Visit T(27,2) at Knotilus!

Edit T(27,2) Quick Notes


Edit T(27,2) Further Notes and Views


Knot presentations

Planar diagram presentation X21,49,22,48 X49,23,50,22 X23,51,24,50 X51,25,52,24 X25,53,26,52 X53,27,54,26 X27,1,28,54 X1,29,2,28 X29,3,30,2 X3,31,4,30 X31,5,32,4 X5,33,6,32 X33,7,34,6 X7,35,8,34 X35,9,36,8 X9,37,10,36 X37,11,38,10 X11,39,12,38 X39,13,40,12 X13,41,14,40 X41,15,42,14 X15,43,16,42 X43,17,44,16 X17,45,18,44 X45,19,46,18 X19,47,20,46 X47,21,48,20
Gauss code -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 1, -2, 3, -4, 5, -6, 7
Dowker-Thistlethwaite code 28 30 32 34 36 38 40 42 44 46 48 50 52 54 2 4 6 8 10 12 14 16 18 20 22 24 26
Braid presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif

Polynomial invariants

Alexander polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^{13}-t^{12}+t^{11}-t^{10}+t^9-t^8+t^7-t^6+t^5-t^4+t^3-t^2+t-1+ t^{-1} - t^{-2} + t^{-3} - t^{-4} + t^{-5} - t^{-6} + t^{-7} - t^{-8} + t^{-9} - t^{-10} + t^{-11} - t^{-12} + t^{-13} }
Conway polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{26}+25 z^{24}+276 z^{22}+1771 z^{20}+7315 z^{18}+20349 z^{16}+38760 z^{14}+50388 z^{12}+43758 z^{10}+24310 z^8+8008 z^6+1365 z^4+91 z^2+1}
2nd Alexander ideal (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
Determinant and Signature { 27, 26 }
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{40}+q^{39}-q^{38}+q^{37}-q^{36}+q^{35}-q^{34}+q^{33}-q^{32}+q^{31}-q^{30}+q^{29}-q^{28}+q^{27}-q^{26}+q^{25}-q^{24}+q^{23}-q^{22}+q^{21}-q^{20}+q^{19}-q^{18}+q^{17}-q^{16}+q^{15}+q^{13}}
HOMFLY-PT polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{26}a^{-26}-26z^{24}a^{-26}-z^{24}a^{-28}+300z^{22}a^{-26}+24z^{22}a^{-28}-2024z^{20}a^{-26}-253z^{20}a^{-28}+8855z^{18}a^{-26}+1540z^{18}a^{-28}-26334z^{16}a^{-26}-5985z^{16}a^{-28}+54264z^{14}a^{-26}+15504z^{14}a^{-28}-77520z^{12}a^{-26}-27132z^{12}a^{-28}+75582z^{10}a^{-26}+31824z^{10}a^{-28}-48620z^8a^{-26}-24310z^8a^{-28}+19448z^6a^{-26}+11440z^6a^{-28}-4368z^4a^{-26}-3003z^4a^{-28}+455z^2a^{-26}+364z^2a^{-28}-14a^{-26}-13a^{-28}}
Kauffman polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{26}a^{-26}+z^{26}a^{-28}+z^{25}a^{-27}+z^{25}a^{-29}-26z^{24}a^{-26}-25z^{24}a^{-28}+z^{24}a^{-30}-24z^{23}a^{-27}-23z^{23}a^{-29}+z^{23}a^{-31}+300z^{22}a^{-26}+277z^{22}a^{-28}-22z^{22}a^{-30}+z^{22}a^{-32}+253z^{21}a^{-27}+231z^{21}a^{-29}-21z^{21}a^{-31}+z^{21}a^{-33}-2024z^{20}a^{-26}-1793z^{20}a^{-28}+210z^{20}a^{-30}-20z^{20}a^{-32}+z^{20}a^{-34}-1540z^{19}a^{-27}-1330z^{19}a^{-29}+190z^{19}a^{-31}-19z^{19}a^{-33}+z^{19}a^{-35}+8855z^{18}a^{-26}+7525z^{18}a^{-28}-1140z^{18}a^{-30}+171z^{18}a^{-32}-18z^{18}a^{-34}+z^{18}a^{-36}+5985z^{17}a^{-27}+4845z^{17}a^{-29}-969z^{17}a^{-31}+153z^{17}a^{-33}-17z^{17}a^{-35}+z^{17}a^{-37}-26334z^{16}a^{-26}-21489z^{16}a^{-28}+3876z^{16}a^{-30}-816z^{16}a^{-32}+136z^{16}a^{-34}-16z^{16}a^{-36}+z^{16}a^{-38}-15504z^{15}a^{-27}-11628z^{15}a^{-29}+3060z^{15}a^{-31}-680z^{15}a^{-33}+120z^{15}a^{-35}-15z^{15}a^{-37}+z^{15}a^{-39}+54264z^{14}a^{-26}+42636z^{14}a^{-28}-8568z^{14}a^{-30}+2380z^{14}a^{-32}-560z^{14}a^{-34}+105z^{14}a^{-36}-14z^{14}a^{-38}+z^{14}a^{-40}+27132z^{13}a^{-27}+18564z^{13}a^{-29}-6188z^{13}a^{-31}+1820z^{13}a^{-33}-455z^{13}a^{-35}+91z^{13}a^{-37}-13z^{13}a^{-39}+z^{13}a^{-41}-77520z^{12}a^{-26}-58956z^{12}a^{-28}+12376z^{12}a^{-30}-4368z^{12}a^{-32}+1365z^{12}a^{-34}-364z^{12}a^{-36}+78z^{12}a^{-38}-12z^{12}a^{-40}+z^{12}a^{-42}-31824z^{11}a^{-27}-19448z^{11}a^{-29}+8008z^{11}a^{-31}-3003z^{11}a^{-33}+1001z^{11}a^{-35}-286z^{11}a^{-37}+66z^{11}a^{-39}-11z^{11}a^{-41}+z^{11}a^{-43}+75582z^{10}a^{-26}+56134z^{10}a^{-28}-11440z^{10}a^{-30}+5005z^{10}a^{-32}-2002z^{10}a^{-34}+715z^{10}a^{-36}-220z^{10}a^{-38}+55z^{10}a^{-40}-10z^{10}a^{-42}+z^{10}a^{-44}+24310z^9a^{-27}+12870z^9a^{-29}-6435z^9a^{-31}+3003z^9a^{-33}-1287z^9a^{-35}+495z^9a^{-37}-165z^9a^{-39}+45z^9a^{-41}-9z^9a^{-43}+z^9a^{-45}-48620z^8a^{-26}-35750z^8a^{-28}+6435z^8a^{-30}-3432z^8a^{-32}+1716z^8a^{-34}-792z^8a^{-36}+330z^8a^{-38}-120z^8a^{-40}+36z^8a^{-42}-8z^8a^{-44}+z^8a^{-46}-11440z^7a^{-27}-5005z^7a^{-29}+3003z^7a^{-31}-1716z^7a^{-33}+924z^7a^{-35}-462z^7a^{-37}+210z^7a^{-39}-84z^7a^{-41}+28z^7a^{-43}-7z^7a^{-45}+z^7a^{-47}+19448z^6a^{-26}+14443z^6a^{-28}-2002z^6a^{-30}+1287z^6a^{-32}-792z^6a^{-34}+462z^6a^{-36}-252z^6a^{-38}+126z^6a^{-40}-56z^6a^{-42}+21z^6a^{-44}-6z^6a^{-46}+z^6a^{-48}+3003z^5a^{-27}+1001z^5a^{-29}-715z^5a^{-31}+495z^5a^{-33}-330z^5a^{-35}+210z^5a^{-37}-126z^5a^{-39}+70z^5a^{-41}-35z^5a^{-43}+15z^5a^{-45}-5z^5a^{-47}+z^5a^{-49}-4368z^4a^{-26}-3367z^4a^{-28}+286z^4a^{-30}-220z^4a^{-32}+165z^4a^{-34}-120z^4a^{-36}+84z^4a^{-38}-56z^4a^{-40}+35z^4a^{-42}-20z^4a^{-44}+10z^4a^{-46}-4z^4a^{-48}+z^4a^{-50}-364z^3a^{-27}-78z^3a^{-29}+66z^3a^{-31}-55z^3a^{-33}+45z^3a^{-35}-36z^3a^{-37}+28z^3a^{-39}-21z^3a^{-41}+15z^3a^{-43}-10z^3a^{-45}+6z^3a^{-47}-3z^3a^{-49}+z^3a^{-51}+455z^2a^{-26}+377z^2a^{-28}-12z^2a^{-30}+11z^2a^{-32}-10z^2a^{-34}+9z^2a^{-36}-8z^2a^{-38}+7z^2a^{-40}-6z^2a^{-42}+5z^2a^{-44}-4z^2a^{-46}+3z^2a^{-48}-2z^2a^{-50}+z^2a^{-52}+13za^{-27}+za^{-29}-za^{-31}+za^{-33}-za^{-35}+za^{-37}-za^{-39}+za^{-41}-za^{-43}+za^{-45}-za^{-47}+za^{-49}-za^{-51}+za^{-53}-14a^{-26}-13a^{-28}}
The A2 invariant Data:T(27,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(27,2)/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}

Vassiliev invariants

V2 and V3: (91, 819)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(27,2)/V 2,1 Data:T(27,2)/V 3,1 Data:T(27,2)/V 4,1 Data:T(27,2)/V 4,2 Data:T(27,2)/V 4,3 Data:T(27,2)/V 5,1 Data:T(27,2)/V 5,2 Data:T(27,2)/V 5,3 Data:T(27,2)/V 5,4 Data:T(27,2)/V 6,1 Data:T(27,2)/V 6,2 Data:T(27,2)/V 6,3 Data:T(27,2)/V 6,4 Data:T(27,2)/V 6,5 Data:T(27,2)/V 6,6 Data:T(27,2)/V 6,7 Data:T(27,2)/V 6,8 Data:T(27,2)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 26 is the signature of T(27,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789101112131415161718192021222324252627χ
81                           1-1
79                            0
77                         11 0
75                            0
73                       11   0
71                            0
69                     11     0
67                            0
65                   11       0
63                            0
61                 11         0
59                            0
57               11           0
55                            0
53             11             0
51                            0
49           11               0
47                            0
45         11                 0
43                            0
41       11                   0
39                            0
37     11                     0
35                            0
33   11                       0
31                            0
29  1                         1
271                           1
251                           1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=25} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=27}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=6} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=7} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=8} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=9} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=10} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=11} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=12} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=14} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=15} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=16}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=17} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=19} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=20} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=21} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=22} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=24} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=25} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=26} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=27} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Torus Knot Page master template (intermediate).

See/edit the Torus Knot_Splice_Base (expert).

Back to the top.

T(9,4).jpg

T(9,4)

T(7,5).jpg

T(7,5)