L9a32: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				| No edit summary | No edit summary | ||
| Line 1: | Line 1: | ||
| <!-- This page was  generated from the splice template "Link_Splice_Template". Please do not edit! --> | |||
| <!--  --> | <!--  --> <!-- | ||
| <!-- This knot page was produced from [[Link Splice Template]] --> | |||
|  --> | |||
| {{Link Page| | |||
| <!-- --> | |||
| n = 9 | | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| t = a | | |||
| <span id="top"></span> | |||
| k = 32 | | |||
| <!-- --> | |||
| ⚫ | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| khovanov_table  = <table border=1> | |||
| {{Knot Navigation Links|ext=gif}} | |||
| ⚫ | |||
| <br style="clear:both" /> | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| {{Link Presentations}} | |||
| {{Link Polynomial Invariants}} | |||
| {{Vassiliev Invariants}} | |||
| {{Khovanov Homology|table=<table border=1> | |||
| <tr align=center> | <tr align=center> | ||
| <td width=14.2857%><table cellpadding=0 cellspacing=0> | <td width=14.2857%><table cellpadding=0 cellspacing=0> | ||
|   <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | <tr><td> </td><td> \ </td><td> </td></tr> | ||
| <tr><td>j</td><td> </td><td>\</td></tr> | <tr><td>j</td><td> </td><td>\</td></tr> | ||
| </table></td> | </table></td> | ||
|   <td width=7.14286%>-9</td    ><td width=7.14286%>-8</td    ><td width=7.14286%>-7</td    ><td width=7.14286%>-6</td    ><td width=7.14286%>-5</td    ><td width=7.14286%>-4</td    ><td width=7.14286%>-3</td    ><td width=7.14286%>-2</td    ><td width=7.14286%>-1</td    ><td width=7.14286%>0</td    ><td width=14.2857%>χ</td></tr> | |||
| <tr align=center><td>-2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> | <tr align=center><td>-2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> | ||
| <tr align=center><td>-4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>-2</td></tr> | <tr align=center><td>-4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>-2</td></tr> | ||
| Line 38: | Line 26: | ||
| <tr align=center><td>-20</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | <tr align=center><td>-20</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | ||
| <tr align=center><td>-22</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | <tr align=center><td>-22</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | ||
| </table> | </table> | | ||
| computer_talk = | |||
| ⚫ | |||
| {{Computer Talk Header}} | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
|          </tr> | |||
| ⚫ | |||
|          <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> | |||
| ⚫ | |||
| ⚫ | |||
| </tr> | |||
| <tr valign=top><td | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[9, Alternating, 32]]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[9, Alternating, 32]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[18, 13, 7, 14], X[14, 9, 15, 10],  | ||
|   X[10, 17, 11, 18], X[16, 5, 17, 6], X[2, 7, 3, 8], X[4, 11, 5, 12],  |   X[10, 17, 11, 18], X[16, 5, 17, 6], X[2, 7, 3, 8], X[4, 11, 5, 12],  | ||
|   X[6, 15, 1, 16]]</nowiki></pre></td></tr> |   X[6, 15, 1, 16]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[9, Alternating, 32]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -7, 2, -8, 6, -9},  | ||
|   {7, -1, 4, -5, 8, -2, 3, -4, 9, -6, 5, -3}]</nowiki></pre></td></tr> |   {7, -1, 4, -5, 8, -2, 3, -4, 9, -6, 5, -3}]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 32]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 32]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: |          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[9, Alternating, 32]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L9a32_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Link[9, Alternating, 32]][t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[9, Alternating, 32]][z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[9, Alternating, 32]], KnotSignature[Link[9, Alternating, 32]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -3}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[9, Alternating, 32]][q]</nowiki></pre></td></tr> | ||
| ⚫ | |||
| q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- -  | q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- -  | ||
|             19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2 |             19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2 | ||
| Line 78: | Line 67: | ||
|    -(3/2) |    -(3/2) | ||
|   q</nowiki></pre></td></tr> |   q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[9, Alternating, 32]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -34    2     -30    4     -22    2     -18    2     -12    2     -8 | ||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| ⚫ | |||
| ⚫ | |||
| -q    - --- + q    + --- + q    + --- + q    + --- - q    + --- + q   -  | -q    - --- + q    + --- + q    + --- + q    + --- - q    + --- + q   -  | ||
|          32           24           20           14           10 |          32           24           20           14           10 | ||
| Line 91: | Line 77: | ||
|    6 |    6 | ||
|   q</nowiki></pre></td></tr> |   q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[9, Alternating, 32]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>    7      9    11 | ||
| -2 a    3 a    a        5        7        9      3  3      5  3 | |||
| ----- + ---- - --- - 3 a  z - 4 a  z + 4 a  z - a  z  - 3 a  z  -  | |||
|   z      z      z | |||
|      7  3 | |||
|   3 a  z</nowiki></pre></td></tr> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[9, Alternating, 32]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                        7      9    11 | |||
|    8      10    12   2 a    3 a    a        5        7         9 |    8      10    12   2 a    3 a    a        5        7         9 | ||
| 3 a  + 3 a   + a   - ---- - ---- - --- - 3 a  z + 6 a  z + 11 a  z +  | 3 a  + 3 a   + a   - ---- - ---- - --- - 3 a  z + 6 a  z + 11 a  z +  | ||
| Line 111: | Line 105: | ||
|      11  7      8  8      10  8 |      11  7      8  8      10  8 | ||
|   3 a   z  - 2 a  z  - 2 a   z</nowiki></pre></td></tr> |   3 a   z  - 2 a  z  - 2 a   z</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Link[9, Alternating, 32]], Vassiliev[3][Link[9, Alternating, 32]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      73 | ||
| {0, -(--)} | {0, -(--)} | ||
|       16</nowiki></pre></td></tr> |       16</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 32]][q, t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4    -2     1        2        1        3        2        4 | ||
| q   + q   + ------ + ------ + ------ + ------ + ------ + ------ +  | q   + q   + ------ + ------ + ------ + ------ + ------ + ------ +  | ||
|              22  9    20  8    18  8    18  7    16  7    16  6 |              22  9    20  8    18  8    18  7    16  7    16  6 | ||
| Line 130: | Line 124: | ||
|    6  2    4 |    6  2    4 | ||
|   q  t    q  t</nowiki></pre></td></tr> |   q  t    q  t</nowiki></pre></td></tr> | ||
| </table> |          </table> }} | ||
|  [[Category:Knot Page]] | |||
Revision as of 13:24, 30 August 2005
|  |  | 
|  (Knotscape image) | See the full Thistlethwaite Link Table (up to 11 crossings). | 
| L9a32 is in the Rolfsen table of links. | 
| Logo of the Canadian Undergraduate Mathematics Conference | 
Link Presentations
[edit Notes on L9a32's Link Presentations]
| Planar diagram presentation | X8192 X12,3,13,4 X18,13,7,14 X14,9,15,10 X10,17,11,18 X16,5,17,6 X2738 X4,11,5,12 X6,15,1,16 | 
| Gauss code | {1, -7, 2, -8, 6, -9}, {7, -1, 4, -5, 8, -2, 3, -4, 9, -6, 5, -3} | 
| A Braid Representative | {{{braid_table}}} | 
| A Morse Link Presentation |   | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | -3 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. | 
 | 






