9 16: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- -->
k = 16 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-1,3,-5,4,-8,7,-6,9,-2,8,-7,6,-3,5,-4/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=16|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-1,3,-5,4,-8,7,-6,9,-2,8,-7,6,-3,5,-4/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 10, width is 3.
braid_index = 3 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
Line 71: Line 35:
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{33}-3 q^{32}+2 q^{31}+6 q^{30}-14 q^{29}+7 q^{28}+16 q^{27}-31 q^{26}+12 q^{25}+28 q^{24}-42 q^{23}+10 q^{22}+35 q^{21}-42 q^{20}+3 q^{19}+35 q^{18}-32 q^{17}-4 q^{16}+27 q^{15}-17 q^{14}-7 q^{13}+15 q^{12}-5 q^{11}-4 q^{10}+5 q^9-q^7+q^6</math> |

coloured_jones_3 = <math>-q^{63}+3 q^{62}-2 q^{61}-3 q^{60}+2 q^{59}+8 q^{58}-5 q^{57}-16 q^{56}+13 q^{55}+24 q^{54}-22 q^{53}-38 q^{52}+33 q^{51}+58 q^{50}-45 q^{49}-78 q^{48}+51 q^{47}+101 q^{46}-56 q^{45}-115 q^{44}+48 q^{43}+131 q^{42}-43 q^{41}-133 q^{40}+26 q^{39}+137 q^{38}-14 q^{37}-128 q^{36}-4 q^{35}+120 q^{34}+20 q^{33}-109 q^{32}-30 q^{31}+87 q^{30}+45 q^{29}-74 q^{28}-44 q^{27}+46 q^{26}+51 q^{25}-35 q^{24}-37 q^{23}+9 q^{22}+37 q^{21}-7 q^{20}-19 q^{19}-5 q^{18}+15 q^{17}+2 q^{16}-4 q^{15}-4 q^{14}+4 q^{13}+q^{12}-q^{10}+q^9</math> |
{{Display Coloured Jones|J2=<math>q^{33}-3 q^{32}+2 q^{31}+6 q^{30}-14 q^{29}+7 q^{28}+16 q^{27}-31 q^{26}+12 q^{25}+28 q^{24}-42 q^{23}+10 q^{22}+35 q^{21}-42 q^{20}+3 q^{19}+35 q^{18}-32 q^{17}-4 q^{16}+27 q^{15}-17 q^{14}-7 q^{13}+15 q^{12}-5 q^{11}-4 q^{10}+5 q^9-q^7+q^6</math>|J3=<math>-q^{63}+3 q^{62}-2 q^{61}-3 q^{60}+2 q^{59}+8 q^{58}-5 q^{57}-16 q^{56}+13 q^{55}+24 q^{54}-22 q^{53}-38 q^{52}+33 q^{51}+58 q^{50}-45 q^{49}-78 q^{48}+51 q^{47}+101 q^{46}-56 q^{45}-115 q^{44}+48 q^{43}+131 q^{42}-43 q^{41}-133 q^{40}+26 q^{39}+137 q^{38}-14 q^{37}-128 q^{36}-4 q^{35}+120 q^{34}+20 q^{33}-109 q^{32}-30 q^{31}+87 q^{30}+45 q^{29}-74 q^{28}-44 q^{27}+46 q^{26}+51 q^{25}-35 q^{24}-37 q^{23}+9 q^{22}+37 q^{21}-7 q^{20}-19 q^{19}-5 q^{18}+15 q^{17}+2 q^{16}-4 q^{15}-4 q^{14}+4 q^{13}+q^{12}-q^{10}+q^9</math>|J4=<math>q^{102}-3 q^{101}+2 q^{100}+3 q^{99}-5 q^{98}+4 q^{97}-10 q^{96}+11 q^{95}+10 q^{94}-23 q^{93}+11 q^{92}-21 q^{91}+38 q^{90}+22 q^{89}-75 q^{88}+10 q^{87}-19 q^{86}+111 q^{85}+44 q^{84}-180 q^{83}-32 q^{82}-12 q^{81}+247 q^{80}+114 q^{79}-311 q^{78}-138 q^{77}-41 q^{76}+401 q^{75}+236 q^{74}-390 q^{73}-252 q^{72}-130 q^{71}+490 q^{70}+360 q^{69}-377 q^{68}-307 q^{67}-238 q^{66}+479 q^{65}+426 q^{64}-296 q^{63}-285 q^{62}-324 q^{61}+394 q^{60}+434 q^{59}-184 q^{58}-219 q^{57}-378 q^{56}+272 q^{55}+400 q^{54}-57 q^{53}-134 q^{52}-401 q^{51}+132 q^{50}+330 q^{49}+59 q^{48}-32 q^{47}-371 q^{46}-3 q^{45}+215 q^{44}+124 q^{43}+72 q^{42}-273 q^{41}-88 q^{40}+81 q^{39}+109 q^{38}+127 q^{37}-135 q^{36}-89 q^{35}-15 q^{34}+44 q^{33}+109 q^{32}-33 q^{31}-40 q^{30}-36 q^{29}-4 q^{28}+53 q^{27}+q^{26}-3 q^{25}-17 q^{24}-12 q^{23}+16 q^{22}+q^{21}+4 q^{20}-3 q^{19}-5 q^{18}+4 q^{17}+q^{15}-q^{13}+q^{12}</math>|J5=<math>-q^{150}+3 q^{149}-2 q^{148}-3 q^{147}+5 q^{146}-q^{145}-2 q^{144}+4 q^{143}-5 q^{142}-6 q^{141}+12 q^{140}+6 q^{139}-10 q^{138}-8 q^{137}-7 q^{136}+13 q^{135}+30 q^{134}+10 q^{133}-44 q^{132}-70 q^{131}-q^{130}+99 q^{129}+125 q^{128}+13 q^{127}-181 q^{126}-248 q^{125}-37 q^{124}+307 q^{123}+419 q^{122}+99 q^{121}-435 q^{120}-660 q^{119}-232 q^{118}+558 q^{117}+959 q^{116}+427 q^{115}-648 q^{114}-1248 q^{113}-696 q^{112}+651 q^{111}+1538 q^{110}+992 q^{109}-600 q^{108}-1732 q^{107}-1281 q^{106}+449 q^{105}+1865 q^{104}+1528 q^{103}-293 q^{102}-1862 q^{101}-1710 q^{100}+88 q^{99}+1826 q^{98}+1797 q^{97}+70 q^{96}-1679 q^{95}-1828 q^{94}-240 q^{93}+1547 q^{92}+1788 q^{91}+348 q^{90}-1340 q^{89}-1723 q^{88}-481 q^{87}+1166 q^{86}+1629 q^{85}+575 q^{84}-945 q^{83}-1520 q^{82}-693 q^{81}+721 q^{80}+1400 q^{79}+799 q^{78}-486 q^{77}-1246 q^{76}-877 q^{75}+208 q^{74}+1065 q^{73}+962 q^{72}+17 q^{71}-833 q^{70}-943 q^{69}-289 q^{68}+586 q^{67}+914 q^{66}+436 q^{65}-304 q^{64}-751 q^{63}-600 q^{62}+64 q^{61}+600 q^{60}+573 q^{59}+160 q^{58}-343 q^{57}-573 q^{56}-277 q^{55}+180 q^{54}+391 q^{53}+334 q^{52}+36 q^{51}-298 q^{50}-300 q^{49}-92 q^{48}+109 q^{47}+225 q^{46}+171 q^{45}-44 q^{44}-140 q^{43}-120 q^{42}-44 q^{41}+62 q^{40}+109 q^{39}+36 q^{38}-15 q^{37}-46 q^{36}-48 q^{35}-9 q^{34}+34 q^{33}+17 q^{32}+12 q^{31}-2 q^{30}-17 q^{29}-11 q^{28}+8 q^{27}+q^{26}+4 q^{25}+4 q^{24}-3 q^{23}-4 q^{22}+3 q^{21}+q^{18}-q^{16}+q^{15}</math>|J6=<math>q^{207}-3 q^{206}+2 q^{205}+3 q^{204}-5 q^{203}+q^{202}-q^{201}+8 q^{200}-10 q^{199}+q^{198}+17 q^{197}-23 q^{196}+q^{195}+6 q^{194}+24 q^{193}-26 q^{192}-13 q^{191}+35 q^{190}-54 q^{189}+19 q^{188}+51 q^{187}+68 q^{186}-93 q^{185}-99 q^{184}+21 q^{183}-98 q^{182}+147 q^{181}+247 q^{180}+198 q^{179}-272 q^{178}-446 q^{177}-200 q^{176}-199 q^{175}+539 q^{174}+890 q^{173}+648 q^{172}-544 q^{171}-1305 q^{170}-1037 q^{169}-654 q^{168}+1196 q^{167}+2297 q^{166}+1918 q^{165}-522 q^{164}-2629 q^{163}-2832 q^{162}-2034 q^{161}+1601 q^{160}+4268 q^{159}+4290 q^{158}+477 q^{157}-3678 q^{156}-5203 q^{155}-4535 q^{154}+966 q^{153}+5831 q^{152}+7137 q^{151}+2582 q^{150}-3554 q^{149}-6995 q^{148}-7347 q^{147}-783 q^{146}+6062 q^{145}+9195 q^{144}+4909 q^{143}-2256 q^{142}-7362 q^{141}-9231 q^{140}-2737 q^{139}+5074 q^{138}+9749 q^{137}+6359 q^{136}-663 q^{135}-6541 q^{134}-9681 q^{133}-3987 q^{132}+3697 q^{131}+9141 q^{130}+6665 q^{129}+506 q^{128}-5301 q^{127}-9131 q^{126}-4452 q^{125}+2476 q^{124}+8063 q^{123}+6330 q^{122}+1292 q^{121}-4056 q^{120}-8208 q^{119}-4620 q^{118}+1315 q^{117}+6829 q^{116}+5872 q^{115}+2104 q^{114}-2692 q^{113}-7128 q^{112}-4838 q^{111}-74 q^{110}+5299 q^{109}+5338 q^{108}+3092 q^{107}-988 q^{106}-5677 q^{105}-4955 q^{104}-1685 q^{103}+3273 q^{102}+4375 q^{101}+3912 q^{100}+959 q^{99}-3617 q^{98}-4465 q^{97}-3031 q^{96}+919 q^{95}+2673 q^{94}+3919 q^{93}+2566 q^{92}-1153 q^{91}-3027 q^{90}-3384 q^{89}-1063 q^{88}+495 q^{87}+2764 q^{86}+3042 q^{85}+900 q^{84}-989 q^{83}-2437 q^{82}-1830 q^{81}-1255 q^{80}+933 q^{79}+2164 q^{78}+1669 q^{77}+638 q^{76}-815 q^{75}-1252 q^{74}-1740 q^{73}-471 q^{72}+698 q^{71}+1143 q^{70}+1074 q^{69}+354 q^{68}-183 q^{67}-1111 q^{66}-780 q^{65}-255 q^{64}+248 q^{63}+591 q^{62}+551 q^{61}+397 q^{60}-306 q^{59}-382 q^{58}-366 q^{57}-181 q^{56}+57 q^{55}+239 q^{54}+345 q^{53}+38 q^{52}-24 q^{51}-133 q^{50}-144 q^{49}-105 q^{48}+11 q^{47}+131 q^{46}+38 q^{45}+53 q^{44}-30 q^{42}-61 q^{41}-28 q^{40}+30 q^{39}-2 q^{38}+21 q^{37}+13 q^{36}+6 q^{35}-17 q^{34}-12 q^{33}+9 q^{32}-6 q^{31}+3 q^{30}+3 q^{29}+5 q^{28}-3 q^{27}-4 q^{26}+4 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math>|J7=Not Available}}
coloured_jones_4 = <math>q^{102}-3 q^{101}+2 q^{100}+3 q^{99}-5 q^{98}+4 q^{97}-10 q^{96}+11 q^{95}+10 q^{94}-23 q^{93}+11 q^{92}-21 q^{91}+38 q^{90}+22 q^{89}-75 q^{88}+10 q^{87}-19 q^{86}+111 q^{85}+44 q^{84}-180 q^{83}-32 q^{82}-12 q^{81}+247 q^{80}+114 q^{79}-311 q^{78}-138 q^{77}-41 q^{76}+401 q^{75}+236 q^{74}-390 q^{73}-252 q^{72}-130 q^{71}+490 q^{70}+360 q^{69}-377 q^{68}-307 q^{67}-238 q^{66}+479 q^{65}+426 q^{64}-296 q^{63}-285 q^{62}-324 q^{61}+394 q^{60}+434 q^{59}-184 q^{58}-219 q^{57}-378 q^{56}+272 q^{55}+400 q^{54}-57 q^{53}-134 q^{52}-401 q^{51}+132 q^{50}+330 q^{49}+59 q^{48}-32 q^{47}-371 q^{46}-3 q^{45}+215 q^{44}+124 q^{43}+72 q^{42}-273 q^{41}-88 q^{40}+81 q^{39}+109 q^{38}+127 q^{37}-135 q^{36}-89 q^{35}-15 q^{34}+44 q^{33}+109 q^{32}-33 q^{31}-40 q^{30}-36 q^{29}-4 q^{28}+53 q^{27}+q^{26}-3 q^{25}-17 q^{24}-12 q^{23}+16 q^{22}+q^{21}+4 q^{20}-3 q^{19}-5 q^{18}+4 q^{17}+q^{15}-q^{13}+q^{12}</math> |

coloured_jones_5 = <math>-q^{150}+3 q^{149}-2 q^{148}-3 q^{147}+5 q^{146}-q^{145}-2 q^{144}+4 q^{143}-5 q^{142}-6 q^{141}+12 q^{140}+6 q^{139}-10 q^{138}-8 q^{137}-7 q^{136}+13 q^{135}+30 q^{134}+10 q^{133}-44 q^{132}-70 q^{131}-q^{130}+99 q^{129}+125 q^{128}+13 q^{127}-181 q^{126}-248 q^{125}-37 q^{124}+307 q^{123}+419 q^{122}+99 q^{121}-435 q^{120}-660 q^{119}-232 q^{118}+558 q^{117}+959 q^{116}+427 q^{115}-648 q^{114}-1248 q^{113}-696 q^{112}+651 q^{111}+1538 q^{110}+992 q^{109}-600 q^{108}-1732 q^{107}-1281 q^{106}+449 q^{105}+1865 q^{104}+1528 q^{103}-293 q^{102}-1862 q^{101}-1710 q^{100}+88 q^{99}+1826 q^{98}+1797 q^{97}+70 q^{96}-1679 q^{95}-1828 q^{94}-240 q^{93}+1547 q^{92}+1788 q^{91}+348 q^{90}-1340 q^{89}-1723 q^{88}-481 q^{87}+1166 q^{86}+1629 q^{85}+575 q^{84}-945 q^{83}-1520 q^{82}-693 q^{81}+721 q^{80}+1400 q^{79}+799 q^{78}-486 q^{77}-1246 q^{76}-877 q^{75}+208 q^{74}+1065 q^{73}+962 q^{72}+17 q^{71}-833 q^{70}-943 q^{69}-289 q^{68}+586 q^{67}+914 q^{66}+436 q^{65}-304 q^{64}-751 q^{63}-600 q^{62}+64 q^{61}+600 q^{60}+573 q^{59}+160 q^{58}-343 q^{57}-573 q^{56}-277 q^{55}+180 q^{54}+391 q^{53}+334 q^{52}+36 q^{51}-298 q^{50}-300 q^{49}-92 q^{48}+109 q^{47}+225 q^{46}+171 q^{45}-44 q^{44}-140 q^{43}-120 q^{42}-44 q^{41}+62 q^{40}+109 q^{39}+36 q^{38}-15 q^{37}-46 q^{36}-48 q^{35}-9 q^{34}+34 q^{33}+17 q^{32}+12 q^{31}-2 q^{30}-17 q^{29}-11 q^{28}+8 q^{27}+q^{26}+4 q^{25}+4 q^{24}-3 q^{23}-4 q^{22}+3 q^{21}+q^{18}-q^{16}+q^{15}</math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{207}-3 q^{206}+2 q^{205}+3 q^{204}-5 q^{203}+q^{202}-q^{201}+8 q^{200}-10 q^{199}+q^{198}+17 q^{197}-23 q^{196}+q^{195}+6 q^{194}+24 q^{193}-26 q^{192}-13 q^{191}+35 q^{190}-54 q^{189}+19 q^{188}+51 q^{187}+68 q^{186}-93 q^{185}-99 q^{184}+21 q^{183}-98 q^{182}+147 q^{181}+247 q^{180}+198 q^{179}-272 q^{178}-446 q^{177}-200 q^{176}-199 q^{175}+539 q^{174}+890 q^{173}+648 q^{172}-544 q^{171}-1305 q^{170}-1037 q^{169}-654 q^{168}+1196 q^{167}+2297 q^{166}+1918 q^{165}-522 q^{164}-2629 q^{163}-2832 q^{162}-2034 q^{161}+1601 q^{160}+4268 q^{159}+4290 q^{158}+477 q^{157}-3678 q^{156}-5203 q^{155}-4535 q^{154}+966 q^{153}+5831 q^{152}+7137 q^{151}+2582 q^{150}-3554 q^{149}-6995 q^{148}-7347 q^{147}-783 q^{146}+6062 q^{145}+9195 q^{144}+4909 q^{143}-2256 q^{142}-7362 q^{141}-9231 q^{140}-2737 q^{139}+5074 q^{138}+9749 q^{137}+6359 q^{136}-663 q^{135}-6541 q^{134}-9681 q^{133}-3987 q^{132}+3697 q^{131}+9141 q^{130}+6665 q^{129}+506 q^{128}-5301 q^{127}-9131 q^{126}-4452 q^{125}+2476 q^{124}+8063 q^{123}+6330 q^{122}+1292 q^{121}-4056 q^{120}-8208 q^{119}-4620 q^{118}+1315 q^{117}+6829 q^{116}+5872 q^{115}+2104 q^{114}-2692 q^{113}-7128 q^{112}-4838 q^{111}-74 q^{110}+5299 q^{109}+5338 q^{108}+3092 q^{107}-988 q^{106}-5677 q^{105}-4955 q^{104}-1685 q^{103}+3273 q^{102}+4375 q^{101}+3912 q^{100}+959 q^{99}-3617 q^{98}-4465 q^{97}-3031 q^{96}+919 q^{95}+2673 q^{94}+3919 q^{93}+2566 q^{92}-1153 q^{91}-3027 q^{90}-3384 q^{89}-1063 q^{88}+495 q^{87}+2764 q^{86}+3042 q^{85}+900 q^{84}-989 q^{83}-2437 q^{82}-1830 q^{81}-1255 q^{80}+933 q^{79}+2164 q^{78}+1669 q^{77}+638 q^{76}-815 q^{75}-1252 q^{74}-1740 q^{73}-471 q^{72}+698 q^{71}+1143 q^{70}+1074 q^{69}+354 q^{68}-183 q^{67}-1111 q^{66}-780 q^{65}-255 q^{64}+248 q^{63}+591 q^{62}+551 q^{61}+397 q^{60}-306 q^{59}-382 q^{58}-366 q^{57}-181 q^{56}+57 q^{55}+239 q^{54}+345 q^{53}+38 q^{52}-24 q^{51}-133 q^{50}-144 q^{49}-105 q^{48}+11 q^{47}+131 q^{46}+38 q^{45}+53 q^{44}-30 q^{42}-61 q^{41}-28 q^{40}+30 q^{39}-2 q^{38}+21 q^{37}+13 q^{36}+6 q^{35}-17 q^{34}-12 q^{33}+9 q^{32}-6 q^{31}+3 q^{30}+3 q^{29}+5 q^{28}-3 q^{27}-4 q^{26}+4 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[16, 6, 17, 5], X[18, 8, 1, 7],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[16, 6, 17, 5], X[18, 8, 1, 7],
X[6, 18, 7, 17], X[10, 16, 11, 15], X[14, 10, 15, 9],
X[6, 18, 7, 17], X[10, 16, 11, 15], X[14, 10, 15, 9],
X[8, 14, 9, 13], X[2, 12, 3, 11]]</nowiki></pre></td></tr>
X[8, 14, 9, 13], X[2, 12, 3, 11]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 16]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 12, 16, 18, 14, 2, 8, 10, 6]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 12, 16, 18, 14, 2, 8, 10, 6]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 2, 2, -1, 2, 2, 2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 2, 2, -1, 2, 2, 2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 16]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_16_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 16]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, {4, 7}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 16]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 5 8 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 16]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_16_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 16]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, {4, 7}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 16]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 5 8 2 3
-9 + -- - -- + - + 8 t - 5 t + 2 t
-9 + -- - -- + - + 8 t - 5 t + 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 16]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 16]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 + 6 z + 7 z + 2 z</nowiki></pre></td></tr>
1 + 6 z + 7 z + 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 16]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 16]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 16]], KnotSignature[Knot[9, 16]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, 6}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 16]], KnotSignature[Knot[9, 16]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 16]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, 6}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4 5 6 7 8 9 10 11 12

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 16]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4 5 6 7 8 9 10 11 12
q - q + 4 q - 5 q + 6 q - 7 q + 6 q - 5 q + 3 q - q</nowiki></pre></td></tr>
q - q + 4 q - 5 q + 6 q - 7 q + 6 q - 5 q + 3 q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 16]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 16]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 16]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 14 16 18 20 22 26 34 36

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 16]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 14 16 18 20 22 26 34 36
q + 3 q + q + 2 q + q - 2 q - 3 q + q - q</nowiki></pre></td></tr>
q + 3 q + q + 2 q + q - 2 q - 3 q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 16]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 16]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 4 6 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 4 6 6
-3 4 2 z 8 z z 3 z 5 z z z
-3 4 2 z 8 z z 3 z 5 z z z
-- + -- - ---- + ---- - --- + ---- + ---- + -- + --
-- + -- - ---- + ---- - --- + ---- + ---- + -- + --
8 6 10 6 10 8 6 8 6
8 6 10 6 10 8 6 8 6
a a a a a a a a a</nowiki></pre></td></tr>
a a a a a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 16]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 16]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 2
-3 4 2 z 2 z 4 z 4 z z 2 z z 6 z 8 z
-3 4 2 z 2 z 4 z 4 z z 2 z z 6 z 8 z
-- - -- + --- + --- + --- + --- - --- + ---- + --- + ---- + ---- +
-- - -- + --- + --- + --- + --- - --- + ---- + --- + ---- + ---- +
Line 169: Line 118:
10 8
10 8
a a</nowiki></pre></td></tr>
a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 16]], Vassiliev[3][Knot[9, 16]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 16]], Vassiliev[3][Knot[9, 16]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{6, 14}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{6, 14}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 16]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 16]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4
q + q + q t + 3 q t + q t + 2 q t + 3 q t + 4 q t +
q + q + q t + 3 q t + q t + 2 q t + 3 q t + 4 q t +
Line 182: Line 129:
21 7 21 8 23 8 25 9
21 7 21 8 23 8 25 9
3 q t + q t + 2 q t + q t</nowiki></pre></td></tr>
3 q t + q t + 2 q t + q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 16], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 16], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 7 9 10 11 12 13 14 15
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 7 9 10 11 12 13 14 15
q - q + 5 q - 4 q - 5 q + 15 q - 7 q - 17 q + 27 q -
q - q + 5 q - 4 q - 5 q + 15 q - 7 q - 17 q + 27 q -
Line 195: Line 141:
32 33
32 33
3 q + q</nowiki></pre></td></tr>
3 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:33, 30 August 2005

9 15.gif

9_15

9 17.gif

9_17

9 16.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 16's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 16 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X16,6,17,5 X18,8,1,7 X6,18,7,17 X10,16,11,15 X14,10,15,9 X8,14,9,13 X2,12,3,11
Gauss code 1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4
Dowker-Thistlethwaite code 4 12 16 18 14 2 8 10 6
Conway Notation [3,3,2+]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

9 16 ML.gif 9 16 AP.gif
[{3, 10}, {2, 6}, {1, 3}, {11, 9}, {10, 8}, {9, 7}, {8, 5}, {6, 4}, {5, 2}, {4, 11}, {7, 1}]

[edit Notes on presentations of 9 16]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [5][-16]
Hyperbolic Volume 9.88301
A-Polynomial See Data:9 16/A-polynomial

[edit Notes for 9 16's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 16's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 39, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (6, 14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 9 16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
25         1-1
23        2 2
21       31 -2
19      32  1
17     43   -1
15    23    -1
13   34     1
11  12      -1
9  3       3
711        0
51         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials