10 78: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 78 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,9,-10,2,-7,8,-4,5,-9,3,-5,4,-6,7,-8,6/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=78|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,9,-10,2,-7,8,-4,5,-9,3,-5,4,-6,7,-8,6/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 27: | Line 12: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 12 | |
|||
braid_width = 5 | |
|||
[[Invariants from Braid Theory|Length]] is 12, width is 5. |
|||
braid_index = 5 | |
|||
same_alexander = [[K11n98]], [[K11n105]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n98]], [[K11n105]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-8</td ><td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
||
Line 74: | Line 38: | ||
<tr align=center><td>-19</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-19</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^2-3 q+11 q^{-1} -13 q^{-2} -10 q^{-3} +37 q^{-4} -21 q^{-5} -37 q^{-6} +69 q^{-7} -16 q^{-8} -73 q^{-9} +91 q^{-10} - q^{-11} -100 q^{-12} +93 q^{-13} +16 q^{-14} -104 q^{-15} +75 q^{-16} +24 q^{-17} -79 q^{-18} +45 q^{-19} +18 q^{-20} -41 q^{-21} +20 q^{-22} +7 q^{-23} -14 q^{-24} +7 q^{-25} + q^{-26} -3 q^{-27} + q^{-28} </math> | |
|||
coloured_jones_3 = <math>q^6-3 q^5+5 q^3+6 q^2-13 q-17+20 q^{-1} +39 q^{-2} -21 q^{-3} -71 q^{-4} +6 q^{-5} +115 q^{-6} +21 q^{-7} -149 q^{-8} -75 q^{-9} +182 q^{-10} +139 q^{-11} -190 q^{-12} -221 q^{-13} +191 q^{-14} +288 q^{-15} -153 q^{-16} -371 q^{-17} +126 q^{-18} +416 q^{-19} -62 q^{-20} -474 q^{-21} +19 q^{-22} +486 q^{-23} +50 q^{-24} -504 q^{-25} -92 q^{-26} +478 q^{-27} +141 q^{-28} -441 q^{-29} -166 q^{-30} +378 q^{-31} +174 q^{-32} -299 q^{-33} -170 q^{-34} +232 q^{-35} +131 q^{-36} -150 q^{-37} -107 q^{-38} +105 q^{-39} +64 q^{-40} -60 q^{-41} -40 q^{-42} +40 q^{-43} +15 q^{-44} -21 q^{-45} -7 q^{-46} +14 q^{-47} + q^{-48} -9 q^{-49} +2 q^{-50} +3 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^2-3 q+11 q^{-1} -13 q^{-2} -10 q^{-3} +37 q^{-4} -21 q^{-5} -37 q^{-6} +69 q^{-7} -16 q^{-8} -73 q^{-9} +91 q^{-10} - q^{-11} -100 q^{-12} +93 q^{-13} +16 q^{-14} -104 q^{-15} +75 q^{-16} +24 q^{-17} -79 q^{-18} +45 q^{-19} +18 q^{-20} -41 q^{-21} +20 q^{-22} +7 q^{-23} -14 q^{-24} +7 q^{-25} + q^{-26} -3 q^{-27} + q^{-28} </math>|J3=<math>q^6-3 q^5+5 q^3+6 q^2-13 q-17+20 q^{-1} +39 q^{-2} -21 q^{-3} -71 q^{-4} +6 q^{-5} +115 q^{-6} +21 q^{-7} -149 q^{-8} -75 q^{-9} +182 q^{-10} +139 q^{-11} -190 q^{-12} -221 q^{-13} +191 q^{-14} +288 q^{-15} -153 q^{-16} -371 q^{-17} +126 q^{-18} +416 q^{-19} -62 q^{-20} -474 q^{-21} +19 q^{-22} +486 q^{-23} +50 q^{-24} -504 q^{-25} -92 q^{-26} +478 q^{-27} +141 q^{-28} -441 q^{-29} -166 q^{-30} +378 q^{-31} +174 q^{-32} -299 q^{-33} -170 q^{-34} +232 q^{-35} +131 q^{-36} -150 q^{-37} -107 q^{-38} +105 q^{-39} +64 q^{-40} -60 q^{-41} -40 q^{-42} +40 q^{-43} +15 q^{-44} -21 q^{-45} -7 q^{-46} +14 q^{-47} + q^{-48} -9 q^{-49} +2 q^{-50} +3 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} </math>|J4=<math>q^{12}-3 q^{11}+5 q^9+6 q^7-20 q^6-10 q^5+20 q^4+15 q^3+48 q^2-63 q-73+5 q^{-1} +42 q^{-2} +207 q^{-3} -55 q^{-4} -186 q^{-5} -151 q^{-6} -56 q^{-7} +484 q^{-8} +152 q^{-9} -167 q^{-10} -426 q^{-11} -467 q^{-12} +642 q^{-13} +527 q^{-14} +215 q^{-15} -559 q^{-16} -1150 q^{-17} +425 q^{-18} +786 q^{-19} +925 q^{-20} -296 q^{-21} -1796 q^{-22} -157 q^{-23} +679 q^{-24} +1685 q^{-25} +337 q^{-26} -2147 q^{-27} -862 q^{-28} +227 q^{-29} +2250 q^{-30} +1114 q^{-31} -2165 q^{-32} -1487 q^{-33} -384 q^{-34} +2556 q^{-35} +1832 q^{-36} -1935 q^{-37} -1935 q^{-38} -1003 q^{-39} +2574 q^{-40} +2368 q^{-41} -1481 q^{-42} -2109 q^{-43} -1539 q^{-44} +2234 q^{-45} +2579 q^{-46} -846 q^{-47} -1871 q^{-48} -1828 q^{-49} +1542 q^{-50} +2311 q^{-51} -225 q^{-52} -1249 q^{-53} -1692 q^{-54} +768 q^{-55} +1619 q^{-56} +114 q^{-57} -543 q^{-58} -1186 q^{-59} +237 q^{-60} +855 q^{-61} +137 q^{-62} -88 q^{-63} -622 q^{-64} +34 q^{-65} +335 q^{-66} +33 q^{-67} +68 q^{-68} -243 q^{-69} +3 q^{-70} +98 q^{-71} -30 q^{-72} +65 q^{-73} -71 q^{-74} +9 q^{-75} +23 q^{-76} -33 q^{-77} +29 q^{-78} -15 q^{-79} +8 q^{-80} +5 q^{-81} -15 q^{-82} +7 q^{-83} -2 q^{-84} +3 q^{-85} + q^{-86} -3 q^{-87} + q^{-88} </math>|J5=<math>q^{20}-3 q^{19}+5 q^{17}-q^{14}-13 q^{13}-10 q^{12}+20 q^{11}+24 q^{10}+15 q^9-3 q^8-56 q^7-73 q^6-6 q^5+95 q^4+136 q^3+88 q^2-84 q-266-247 q^{-1} +10 q^{-2} +354 q^{-3} +498 q^{-4} +234 q^{-5} -339 q^{-6} -792 q^{-7} -670 q^{-8} +96 q^{-9} +1021 q^{-10} +1246 q^{-11} +453 q^{-12} -947 q^{-13} -1890 q^{-14} -1363 q^{-15} +526 q^{-16} +2330 q^{-17} +2460 q^{-18} +481 q^{-19} -2372 q^{-20} -3676 q^{-21} -1889 q^{-22} +1841 q^{-23} +4588 q^{-24} +3713 q^{-25} -654 q^{-26} -5126 q^{-27} -5569 q^{-28} -1114 q^{-29} +4963 q^{-30} +7379 q^{-31} +3298 q^{-32} -4271 q^{-33} -8692 q^{-34} -5714 q^{-35} +2866 q^{-36} +9720 q^{-37} +8094 q^{-38} -1232 q^{-39} -10049 q^{-40} -10306 q^{-41} -869 q^{-42} +10197 q^{-43} +12248 q^{-44} +2792 q^{-45} -9783 q^{-46} -13878 q^{-47} -4919 q^{-48} +9370 q^{-49} +15252 q^{-50} +6696 q^{-51} -8586 q^{-52} -16326 q^{-53} -8590 q^{-54} +7858 q^{-55} +17149 q^{-56} +10152 q^{-57} -6755 q^{-58} -17634 q^{-59} -11764 q^{-60} +5584 q^{-61} +17702 q^{-62} +13016 q^{-63} -4006 q^{-64} -17210 q^{-65} -14083 q^{-66} +2285 q^{-67} +16123 q^{-68} +14575 q^{-69} -404 q^{-70} -14357 q^{-71} -14485 q^{-72} -1426 q^{-73} +12114 q^{-74} +13721 q^{-75} +2846 q^{-76} -9509 q^{-77} -12209 q^{-78} -3915 q^{-79} +6902 q^{-80} +10360 q^{-81} +4233 q^{-82} -4577 q^{-83} -8067 q^{-84} -4187 q^{-85} +2674 q^{-86} +6027 q^{-87} +3574 q^{-88} -1346 q^{-89} -4079 q^{-90} -2876 q^{-91} +489 q^{-92} +2662 q^{-93} +2044 q^{-94} -46 q^{-95} -1543 q^{-96} -1416 q^{-97} -129 q^{-98} +879 q^{-99} +848 q^{-100} +166 q^{-101} -413 q^{-102} -513 q^{-103} -150 q^{-104} +210 q^{-105} +260 q^{-106} +97 q^{-107} -72 q^{-108} -122 q^{-109} -70 q^{-110} +15 q^{-111} +64 q^{-112} +34 q^{-113} -8 q^{-114} -7 q^{-115} -17 q^{-116} -19 q^{-117} +11 q^{-118} +12 q^{-119} -5 q^{-120} +10 q^{-121} - q^{-122} -11 q^{-123} + q^{-124} +3 q^{-125} -2 q^{-126} +3 q^{-127} + q^{-128} -3 q^{-129} + q^{-130} </math>|J6=<math>q^{30}-3 q^{29}+5 q^{27}-7 q^{24}+6 q^{23}-13 q^{22}-10 q^{21}+29 q^{20}+15 q^{19}+15 q^{18}-27 q^{17}+4 q^{16}-67 q^{15}-73 q^{14}+59 q^{13}+86 q^{12}+135 q^{11}+15 q^{10}+72 q^9-230 q^8-365 q^7-121 q^6+67 q^5+422 q^4+376 q^3+666 q^2-130 q-844-955 q^{-1} -799 q^{-2} +100 q^{-3} +744 q^{-4} +2323 q^{-5} +1444 q^{-6} -63 q^{-7} -1674 q^{-8} -2939 q^{-9} -2571 q^{-10} -1234 q^{-11} +3406 q^{-12} +4632 q^{-13} +4209 q^{-14} +1127 q^{-15} -3451 q^{-16} -7082 q^{-17} -8074 q^{-18} -771 q^{-19} +5024 q^{-20} +10428 q^{-21} +9987 q^{-22} +3545 q^{-23} -7307 q^{-24} -16786 q^{-25} -12513 q^{-26} -4203 q^{-27} +10689 q^{-28} +20320 q^{-29} +19700 q^{-30} +4209 q^{-31} -17836 q^{-32} -25635 q^{-33} -23755 q^{-34} -2739 q^{-35} +21464 q^{-36} +37278 q^{-37} +27093 q^{-38} -3643 q^{-39} -28813 q^{-40} -44708 q^{-41} -28428 q^{-42} +6501 q^{-43} +44747 q^{-44} +51694 q^{-45} +23351 q^{-46} -16022 q^{-47} -55896 q^{-48} -56423 q^{-49} -21155 q^{-50} +37030 q^{-51} +67591 q^{-52} +53235 q^{-53} +8682 q^{-54} -53313 q^{-55} -77196 q^{-56} -51845 q^{-57} +18441 q^{-58} +71658 q^{-59} +77422 q^{-60} +36285 q^{-61} -41293 q^{-62} -88186 q^{-63} -77893 q^{-64} -3050 q^{-65} +67801 q^{-66} +93735 q^{-67} +60290 q^{-68} -26534 q^{-69} -92520 q^{-70} -97465 q^{-71} -22458 q^{-72} +61055 q^{-73} +104478 q^{-74} +79605 q^{-75} -12244 q^{-76} -93390 q^{-77} -112292 q^{-78} -39902 q^{-79} +52519 q^{-80} +111176 q^{-81} +95965 q^{-82} +3219 q^{-83} -89748 q^{-84} -122656 q^{-85} -57530 q^{-86} +38902 q^{-87} +110931 q^{-88} +108825 q^{-89} +22424 q^{-90} -76852 q^{-91} -124197 q^{-92} -73977 q^{-93} +17489 q^{-94} +98016 q^{-95} +112533 q^{-96} +42840 q^{-97} -52366 q^{-98} -110636 q^{-99} -82112 q^{-100} -7603 q^{-101} +71011 q^{-102} +100433 q^{-103} +55677 q^{-104} -22378 q^{-105} -81793 q^{-106} -74838 q^{-107} -25953 q^{-108} +38032 q^{-109} +73539 q^{-110} +53566 q^{-111} +1206 q^{-112} -47522 q^{-113} -53940 q^{-114} -30082 q^{-115} +11806 q^{-116} +42539 q^{-117} +38927 q^{-118} +11098 q^{-119} -20559 q^{-120} -29958 q^{-121} -22676 q^{-122} -1132 q^{-123} +19006 q^{-124} +21589 q^{-125} +10109 q^{-126} -6202 q^{-127} -12561 q^{-128} -12368 q^{-129} -3839 q^{-130} +6575 q^{-131} +9300 q^{-132} +5608 q^{-133} -1184 q^{-134} -3864 q^{-135} -5131 q^{-136} -2622 q^{-137} +1863 q^{-138} +3229 q^{-139} +2249 q^{-140} -160 q^{-141} -773 q^{-142} -1700 q^{-143} -1236 q^{-144} +513 q^{-145} +947 q^{-146} +724 q^{-147} -75 q^{-148} -10 q^{-149} -466 q^{-150} -507 q^{-151} +164 q^{-152} +240 q^{-153} +206 q^{-154} -56 q^{-155} +86 q^{-156} -105 q^{-157} -192 q^{-158} +53 q^{-159} +45 q^{-160} +57 q^{-161} -31 q^{-162} +56 q^{-163} -16 q^{-164} -64 q^{-165} +16 q^{-166} +16 q^{-168} -12 q^{-169} +20 q^{-170} + q^{-171} -17 q^{-172} +5 q^{-173} -3 q^{-174} +3 q^{-175} -2 q^{-176} +3 q^{-177} + q^{-178} -3 q^{-179} + q^{-180} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{12}-3 q^{11}+5 q^9+6 q^7-20 q^6-10 q^5+20 q^4+15 q^3+48 q^2-63 q-73+5 q^{-1} +42 q^{-2} +207 q^{-3} -55 q^{-4} -186 q^{-5} -151 q^{-6} -56 q^{-7} +484 q^{-8} +152 q^{-9} -167 q^{-10} -426 q^{-11} -467 q^{-12} +642 q^{-13} +527 q^{-14} +215 q^{-15} -559 q^{-16} -1150 q^{-17} +425 q^{-18} +786 q^{-19} +925 q^{-20} -296 q^{-21} -1796 q^{-22} -157 q^{-23} +679 q^{-24} +1685 q^{-25} +337 q^{-26} -2147 q^{-27} -862 q^{-28} +227 q^{-29} +2250 q^{-30} +1114 q^{-31} -2165 q^{-32} -1487 q^{-33} -384 q^{-34} +2556 q^{-35} +1832 q^{-36} -1935 q^{-37} -1935 q^{-38} -1003 q^{-39} +2574 q^{-40} +2368 q^{-41} -1481 q^{-42} -2109 q^{-43} -1539 q^{-44} +2234 q^{-45} +2579 q^{-46} -846 q^{-47} -1871 q^{-48} -1828 q^{-49} +1542 q^{-50} +2311 q^{-51} -225 q^{-52} -1249 q^{-53} -1692 q^{-54} +768 q^{-55} +1619 q^{-56} +114 q^{-57} -543 q^{-58} -1186 q^{-59} +237 q^{-60} +855 q^{-61} +137 q^{-62} -88 q^{-63} -622 q^{-64} +34 q^{-65} +335 q^{-66} +33 q^{-67} +68 q^{-68} -243 q^{-69} +3 q^{-70} +98 q^{-71} -30 q^{-72} +65 q^{-73} -71 q^{-74} +9 q^{-75} +23 q^{-76} -33 q^{-77} +29 q^{-78} -15 q^{-79} +8 q^{-80} +5 q^{-81} -15 q^{-82} +7 q^{-83} -2 q^{-84} +3 q^{-85} + q^{-86} -3 q^{-87} + q^{-88} </math> | |
|||
coloured_jones_5 = <math>q^{20}-3 q^{19}+5 q^{17}-q^{14}-13 q^{13}-10 q^{12}+20 q^{11}+24 q^{10}+15 q^9-3 q^8-56 q^7-73 q^6-6 q^5+95 q^4+136 q^3+88 q^2-84 q-266-247 q^{-1} +10 q^{-2} +354 q^{-3} +498 q^{-4} +234 q^{-5} -339 q^{-6} -792 q^{-7} -670 q^{-8} +96 q^{-9} +1021 q^{-10} +1246 q^{-11} +453 q^{-12} -947 q^{-13} -1890 q^{-14} -1363 q^{-15} +526 q^{-16} +2330 q^{-17} +2460 q^{-18} +481 q^{-19} -2372 q^{-20} -3676 q^{-21} -1889 q^{-22} +1841 q^{-23} +4588 q^{-24} +3713 q^{-25} -654 q^{-26} -5126 q^{-27} -5569 q^{-28} -1114 q^{-29} +4963 q^{-30} +7379 q^{-31} +3298 q^{-32} -4271 q^{-33} -8692 q^{-34} -5714 q^{-35} +2866 q^{-36} +9720 q^{-37} +8094 q^{-38} -1232 q^{-39} -10049 q^{-40} -10306 q^{-41} -869 q^{-42} +10197 q^{-43} +12248 q^{-44} +2792 q^{-45} -9783 q^{-46} -13878 q^{-47} -4919 q^{-48} +9370 q^{-49} +15252 q^{-50} +6696 q^{-51} -8586 q^{-52} -16326 q^{-53} -8590 q^{-54} +7858 q^{-55} +17149 q^{-56} +10152 q^{-57} -6755 q^{-58} -17634 q^{-59} -11764 q^{-60} +5584 q^{-61} +17702 q^{-62} +13016 q^{-63} -4006 q^{-64} -17210 q^{-65} -14083 q^{-66} +2285 q^{-67} +16123 q^{-68} +14575 q^{-69} -404 q^{-70} -14357 q^{-71} -14485 q^{-72} -1426 q^{-73} +12114 q^{-74} +13721 q^{-75} +2846 q^{-76} -9509 q^{-77} -12209 q^{-78} -3915 q^{-79} +6902 q^{-80} +10360 q^{-81} +4233 q^{-82} -4577 q^{-83} -8067 q^{-84} -4187 q^{-85} +2674 q^{-86} +6027 q^{-87} +3574 q^{-88} -1346 q^{-89} -4079 q^{-90} -2876 q^{-91} +489 q^{-92} +2662 q^{-93} +2044 q^{-94} -46 q^{-95} -1543 q^{-96} -1416 q^{-97} -129 q^{-98} +879 q^{-99} +848 q^{-100} +166 q^{-101} -413 q^{-102} -513 q^{-103} -150 q^{-104} +210 q^{-105} +260 q^{-106} +97 q^{-107} -72 q^{-108} -122 q^{-109} -70 q^{-110} +15 q^{-111} +64 q^{-112} +34 q^{-113} -8 q^{-114} -7 q^{-115} -17 q^{-116} -19 q^{-117} +11 q^{-118} +12 q^{-119} -5 q^{-120} +10 q^{-121} - q^{-122} -11 q^{-123} + q^{-124} +3 q^{-125} -2 q^{-126} +3 q^{-127} + q^{-128} -3 q^{-129} + q^{-130} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{30}-3 q^{29}+5 q^{27}-7 q^{24}+6 q^{23}-13 q^{22}-10 q^{21}+29 q^{20}+15 q^{19}+15 q^{18}-27 q^{17}+4 q^{16}-67 q^{15}-73 q^{14}+59 q^{13}+86 q^{12}+135 q^{11}+15 q^{10}+72 q^9-230 q^8-365 q^7-121 q^6+67 q^5+422 q^4+376 q^3+666 q^2-130 q-844-955 q^{-1} -799 q^{-2} +100 q^{-3} +744 q^{-4} +2323 q^{-5} +1444 q^{-6} -63 q^{-7} -1674 q^{-8} -2939 q^{-9} -2571 q^{-10} -1234 q^{-11} +3406 q^{-12} +4632 q^{-13} +4209 q^{-14} +1127 q^{-15} -3451 q^{-16} -7082 q^{-17} -8074 q^{-18} -771 q^{-19} +5024 q^{-20} +10428 q^{-21} +9987 q^{-22} +3545 q^{-23} -7307 q^{-24} -16786 q^{-25} -12513 q^{-26} -4203 q^{-27} +10689 q^{-28} +20320 q^{-29} +19700 q^{-30} +4209 q^{-31} -17836 q^{-32} -25635 q^{-33} -23755 q^{-34} -2739 q^{-35} +21464 q^{-36} +37278 q^{-37} +27093 q^{-38} -3643 q^{-39} -28813 q^{-40} -44708 q^{-41} -28428 q^{-42} +6501 q^{-43} +44747 q^{-44} +51694 q^{-45} +23351 q^{-46} -16022 q^{-47} -55896 q^{-48} -56423 q^{-49} -21155 q^{-50} +37030 q^{-51} +67591 q^{-52} +53235 q^{-53} +8682 q^{-54} -53313 q^{-55} -77196 q^{-56} -51845 q^{-57} +18441 q^{-58} +71658 q^{-59} +77422 q^{-60} +36285 q^{-61} -41293 q^{-62} -88186 q^{-63} -77893 q^{-64} -3050 q^{-65} +67801 q^{-66} +93735 q^{-67} +60290 q^{-68} -26534 q^{-69} -92520 q^{-70} -97465 q^{-71} -22458 q^{-72} +61055 q^{-73} +104478 q^{-74} +79605 q^{-75} -12244 q^{-76} -93390 q^{-77} -112292 q^{-78} -39902 q^{-79} +52519 q^{-80} +111176 q^{-81} +95965 q^{-82} +3219 q^{-83} -89748 q^{-84} -122656 q^{-85} -57530 q^{-86} +38902 q^{-87} +110931 q^{-88} +108825 q^{-89} +22424 q^{-90} -76852 q^{-91} -124197 q^{-92} -73977 q^{-93} +17489 q^{-94} +98016 q^{-95} +112533 q^{-96} +42840 q^{-97} -52366 q^{-98} -110636 q^{-99} -82112 q^{-100} -7603 q^{-101} +71011 q^{-102} +100433 q^{-103} +55677 q^{-104} -22378 q^{-105} -81793 q^{-106} -74838 q^{-107} -25953 q^{-108} +38032 q^{-109} +73539 q^{-110} +53566 q^{-111} +1206 q^{-112} -47522 q^{-113} -53940 q^{-114} -30082 q^{-115} +11806 q^{-116} +42539 q^{-117} +38927 q^{-118} +11098 q^{-119} -20559 q^{-120} -29958 q^{-121} -22676 q^{-122} -1132 q^{-123} +19006 q^{-124} +21589 q^{-125} +10109 q^{-126} -6202 q^{-127} -12561 q^{-128} -12368 q^{-129} -3839 q^{-130} +6575 q^{-131} +9300 q^{-132} +5608 q^{-133} -1184 q^{-134} -3864 q^{-135} -5131 q^{-136} -2622 q^{-137} +1863 q^{-138} +3229 q^{-139} +2249 q^{-140} -160 q^{-141} -773 q^{-142} -1700 q^{-143} -1236 q^{-144} +513 q^{-145} +947 q^{-146} +724 q^{-147} -75 q^{-148} -10 q^{-149} -466 q^{-150} -507 q^{-151} +164 q^{-152} +240 q^{-153} +206 q^{-154} -56 q^{-155} +86 q^{-156} -105 q^{-157} -192 q^{-158} +53 q^{-159} +45 q^{-160} +57 q^{-161} -31 q^{-162} +56 q^{-163} -16 q^{-164} -64 q^{-165} +16 q^{-166} +16 q^{-168} -12 q^{-169} +20 q^{-170} + q^{-171} -17 q^{-172} +5 q^{-173} -3 q^{-174} +3 q^{-175} -2 q^{-176} +3 q^{-177} + q^{-178} -3 q^{-179} + q^{-180} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 78]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 78]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[11, 17, 12, 16], |
|||
X[15, 13, 16, 12], X[17, 20, 18, 1], X[9, 18, 10, 19], |
X[15, 13, 16, 12], X[17, 20, 18, 1], X[9, 18, 10, 19], |
||
X[19, 10, 20, 11], X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
X[19, 10, 20, 11], X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 78]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -7, 8, -4, 5, -9, 3, -5, 4, -6, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -7, 8, -4, 5, -9, 3, -5, 4, -6, |
|||
7, -8, 6]</nowiki></pre></td></tr> |
7, -8, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 78]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 2, 18, 16, 6, 12, 20, 10]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 78]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, -2, 1, -2, -1, 3, -2, -4, 3, -4, -4}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 12}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 78]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 78]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_78_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 78]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 78]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 16 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 78]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_78_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 78]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 78]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 16 2 3 |
|||
21 - t + -- - -- - 16 t + 7 t - t |
21 - t + -- - -- - 16 t + 7 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 78]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 3 z + z - z</nowiki></pre></td></tr> |
1 + 3 z + z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 78], Knot[11, NonAlternating, 98], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 78], Knot[11, NonAlternating, 98], |
|||
Knot[11, NonAlternating, 105]}</nowiki></pre></td></tr> |
Knot[11, NonAlternating, 105]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 78]], KnotSignature[Knot[10, 78]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{69, -4}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 78]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 3 5 9 11 11 11 8 6 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 78]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 3 5 9 11 11 11 8 6 3 |
|||
1 + q - -- + -- - -- + -- - -- + -- - -- + -- - - |
1 + q - -- + -- - -- + -- - -- + -- - -- + -- - - |
||
9 8 7 6 5 4 3 2 q |
9 8 7 6 5 4 3 2 q |
||
q q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 78]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 78]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -32 -30 2 -26 -24 3 2 2 2 -12 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 78]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -32 -30 2 -26 -24 3 2 2 2 -12 |
|||
1 + q + q - --- - q - q - --- + --- + --- + --- - q + |
1 + q + q - --- - q - q - --- + --- + --- + --- - q + |
||
28 22 20 16 14 |
28 22 20 16 14 |
||
Line 153: | Line 104: | ||
10 8 |
10 8 |
||
q q</nowiki></pre></td></tr> |
q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 78]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 2 2 4 2 6 2 8 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 2 2 4 2 6 2 8 2 |
|||
a - a + 4 a - 4 a + a + 2 a z - 3 a z + 7 a z - 3 a z + |
a - a + 4 a - 4 a + a + 2 a z - 3 a z + 7 a z - 3 a z + |
||
2 4 4 4 6 4 4 6 |
2 4 4 4 6 4 4 6 |
||
a z - 3 a z + 3 a z - a z</nowiki></pre></td></tr> |
a z - 3 a z + 3 a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 78]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 3 5 7 9 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 3 5 7 9 |
|||
-a - a - 4 a - 4 a - a - a z - 3 a z + 2 a z + 6 a z + |
-a - a - 4 a - 4 a - a - a z - 3 a z + 2 a z + 6 a z + |
||
Line 182: | Line 131: | ||
4 8 6 8 8 8 5 9 7 9 |
4 8 6 8 8 8 5 9 7 9 |
||
3 a z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
3 a z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 78]], Vassiliev[3][Knot[10, 78]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, -5}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 78]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 4 1 2 1 3 2 6 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 78]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 4 1 2 1 3 2 6 |
|||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
5 3 21 8 19 7 17 7 17 6 15 6 15 5 |
5 3 21 8 19 7 17 7 17 6 15 6 15 5 |
||
Line 201: | Line 148: | ||
5 3 q |
5 3 q |
||
q t q</nowiki></pre></td></tr> |
q t q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 78], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 3 -26 7 14 7 20 41 18 45 79 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 3 -26 7 14 7 20 41 18 45 79 |
|||
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + |
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + |
||
27 25 24 23 22 21 20 19 18 |
27 25 24 23 22 21 20 19 18 |
||
Line 217: | Line 163: | ||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:35, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 78's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X5,14,6,15 X11,17,12,16 X15,13,16,12 X17,20,18,1 X9,18,10,19 X19,10,20,11 X13,6,14,7 X7283 |
Gauss code | -1, 10, -2, 1, -3, 9, -10, 2, -7, 8, -4, 5, -9, 3, -5, 4, -6, 7, -8, 6 |
Dowker-Thistlethwaite code | 4 8 14 2 18 16 6 12 20 10 |
Conway Notation | [21,21,2++] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
[{13, 3}, {2, 11}, {9, 12}, {11, 13}, {10, 4}, {3, 9}, {5, 10}, {4, 6}, {7, 5}, {6, 1}, {8, 2}, {12, 7}, {1, 8}] |
[edit Notes on presentations of 10 78]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 78"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,14,6,15 X11,17,12,16 X15,13,16,12 X17,20,18,1 X9,18,10,19 X19,10,20,11 X13,6,14,7 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -3, 9, -10, 2, -7, 8, -4, 5, -9, 3, -5, 4, -6, 7, -8, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 2 18 16 6 12 20 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[21,21,2++] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{13, 3}, {2, 11}, {9, 12}, {11, 13}, {10, 4}, {3, 9}, {5, 10}, {4, 6}, {7, 5}, {6, 1}, {8, 2}, {12, 7}, {1, 8}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 78"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 69, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n98, K11n105,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 78"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n98, K11n105,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 10 78. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|