K11n105

From Knot Atlas
Jump to navigationJump to search

K11n104.gif

K11n104

K11n106.gif

K11n106

K11n105.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n105 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,5,15,6 X16,8,17,7 X2,10,3,9 X11,21,12,20 X13,1,14,22 X18,16,19,15 X8,18,9,17 X6,19,7,20 X21,13,22,12
Gauss code 1, -5, 2, -1, 3, -10, 4, -9, 5, -2, -6, 11, -7, -3, 8, -4, 9, -8, 10, 6, -11, 7
Dowker-Thistlethwaite code 4 10 14 16 2 -20 -22 18 8 6 -12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11n105 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11n105's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+7 t^2-16 t+21-16 t^{-1} +7 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6+z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 69, 4 }
Jones polynomial [math]\displaystyle{ -q^{11}+4 q^{10}-7 q^9+9 q^8-12 q^7+12 q^6-10 q^5+8 q^4-4 q^3+2 q^2 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-6} +2 z^4 a^{-4} -3 z^4 a^{-6} +2 z^4 a^{-8} +5 z^2 a^{-4} -4 z^2 a^{-6} +3 z^2 a^{-8} -z^2 a^{-10} +3 a^{-4} -2 a^{-6} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-7} +z^9 a^{-9} +2 z^8 a^{-6} +6 z^8 a^{-8} +4 z^8 a^{-10} +z^7 a^{-5} +3 z^7 a^{-7} +8 z^7 a^{-9} +6 z^7 a^{-11} -3 z^6 a^{-6} -10 z^6 a^{-8} -3 z^6 a^{-10} +4 z^6 a^{-12} +z^5 a^{-5} -5 z^5 a^{-7} -19 z^5 a^{-9} -12 z^5 a^{-11} +z^5 a^{-13} +3 z^4 a^{-4} +8 z^4 a^{-6} +8 z^4 a^{-8} -4 z^4 a^{-10} -7 z^4 a^{-12} -z^3 a^{-5} +4 z^3 a^{-7} +11 z^3 a^{-9} +5 z^3 a^{-11} -z^3 a^{-13} -6 z^2 a^{-4} -8 z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} +z^2 a^{-12} -2 z a^{-5} -z a^{-7} +z a^{-9} +3 a^{-4} +2 a^{-6} }[/math]
The A2 invariant [math]\displaystyle{ 2 q^{-6} - q^{-8} +3 q^{-10} + q^{-12} - q^{-14} +3 q^{-16} -2 q^{-18} + q^{-20} -2 q^{-22} -2 q^{-24} + q^{-26} -2 q^{-28} +2 q^{-30} + q^{-32} - q^{-34} }[/math]
The G2 invariant Data:K11n105/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_78, K11n98,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (3, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 174 }[/math] [math]\displaystyle{ 26 }[/math] [math]\displaystyle{ 480 }[/math] [math]\displaystyle{ \frac{2512}{3} }[/math] [math]\displaystyle{ \frac{352}{3} }[/math] [math]\displaystyle{ 136 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 800 }[/math] [math]\displaystyle{ 2088 }[/math] [math]\displaystyle{ 312 }[/math] [math]\displaystyle{ \frac{41151}{10} }[/math] [math]\displaystyle{ -\frac{2306}{15} }[/math] [math]\displaystyle{ \frac{8914}{5} }[/math] [math]\displaystyle{ \frac{171}{2} }[/math] [math]\displaystyle{ \frac{2271}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11n105. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
23         1-1
21        3 3
19       41 -3
17      53  2
15     74   -3
13    55    0
11   57     2
9  35      -2
7 15       4
513        -2
32         2
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n104.gif

K11n104

K11n106.gif

K11n106