K11n104

From Knot Atlas
Jump to navigationJump to search

K11n103.gif

K11n103

K11n105.gif

K11n105

K11n104.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n104 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X5,15,6,14 X7,16,8,17 X2,10,3,9 X11,21,12,20 X13,1,14,22 X15,19,16,18 X17,6,18,7 X19,9,20,8 X21,13,22,12
Gauss code 1, -5, 2, -1, -3, 9, -4, 10, 5, -2, -6, 11, -7, 3, -8, 4, -9, 8, -10, 6, -11, 7
Dowker-Thistlethwaite code 4 10 -14 -16 2 -20 -22 -18 -6 -8 -12
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation K11n104 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -6

[edit Notes for K11n104's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^4+3 t^3-2 t^2-2 t+5-2 t^{-1} -2 t^{-2} +3 t^{-3} - t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ -z^8-5 z^6-4 z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 3, 6 }
Jones polynomial [math]\displaystyle{ q^{10}-q^9-q^7+q^5-q^4+2 q^3-q^2+q }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -16 z^4 a^{-6} +6 z^4 a^{-8} +10 z^2 a^{-4} -16 z^2 a^{-6} +8 z^2 a^{-8} -z^2 a^{-10} +5 a^{-4} -6 a^{-6} +2 a^{-8} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-5} +z^9 a^{-7} +z^8 a^{-4} +3 z^8 a^{-6} +2 z^8 a^{-8} -6 z^7 a^{-5} -5 z^7 a^{-7} +z^7 a^{-9} -7 z^6 a^{-4} -20 z^6 a^{-6} -13 z^6 a^{-8} +9 z^5 a^{-5} +2 z^5 a^{-7} -6 z^5 a^{-9} +z^5 a^{-11} +16 z^4 a^{-4} +39 z^4 a^{-6} +22 z^4 a^{-8} +z^4 a^{-12} -z^3 a^{-5} +9 z^3 a^{-7} +6 z^3 a^{-9} -4 z^3 a^{-11} -15 z^2 a^{-4} -27 z^2 a^{-6} -11 z^2 a^{-8} -2 z^2 a^{-10} -3 z^2 a^{-12} -4 z a^{-5} -5 z a^{-7} +z a^{-9} +2 z a^{-11} +5 a^{-4} +6 a^{-6} +2 a^{-8} }[/math]
The A2 invariant [math]\displaystyle{ q^{-4} + q^{-6} + q^{-8} +2 q^{-10} + q^{-12} -2 q^{-20} - q^{-22} -2 q^{-24} + q^{-30} +2 q^{-32} - q^{-34} }[/math]
The G2 invariant Data:K11n104/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -\frac{82}{3} }[/math] [math]\displaystyle{ \frac{106}{3} }[/math] [math]\displaystyle{ -32 }[/math] [math]\displaystyle{ \frac{112}{3} }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 184 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -\frac{328}{3} }[/math] [math]\displaystyle{ \frac{424}{3} }[/math] [math]\displaystyle{ \frac{19711}{30} }[/math] [math]\displaystyle{ -\frac{8422}{15} }[/math] [math]\displaystyle{ \frac{72422}{45} }[/math] [math]\displaystyle{ \frac{3713}{18} }[/math] [math]\displaystyle{ \frac{4831}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]6 is the signature of K11n104. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345678χ
21          11
19           0
17       111 -1
15      12   -1
13     111   -1
11    122    1
9   11      0
7  111      1
5 12        1
3           0
11          1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n103.gif

K11n103

K11n105.gif

K11n105