K11n103

From Knot Atlas
Jump to navigationJump to search

K11n102.gif

K11n102

K11n104.gif

K11n104

K11n103.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n103 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X14,5,15,6 X12,8,13,7 X9,20,10,21 X2,11,3,12 X16,13,17,14 X6,15,7,16 X17,22,18,1 X19,8,20,9 X21,18,22,19
Gauss code 1, -6, 2, -1, 3, -8, 4, 10, -5, -2, 6, -4, 7, -3, 8, -7, -9, 11, -10, 5, -11, 9
Dowker-Thistlethwaite code 4 10 14 12 -20 2 16 6 -22 -8 -18
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n103 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 4

[edit Notes for K11n103's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+7 t^2-15 t+19-15 t^{-1} +7 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6+z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 65, -4 }
Jones polynomial [math]\displaystyle{ 1-3 q^{-1} +6 q^{-2} -8 q^{-3} +11 q^{-4} -11 q^{-5} +10 q^{-6} -8 q^{-7} +5 q^{-8} -2 q^{-9} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -2 z^2 a^8-2 a^8+3 z^4 a^6+7 z^2 a^6+3 a^6-z^6 a^4-3 z^4 a^4-3 z^2 a^4-a^4+z^4 a^2+2 z^2 a^2+a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 3 z^3 a^{11}-2 z a^{11}+z^6 a^{10}+4 z^4 a^{10}-3 z^2 a^{10}+3 z^7 a^9-2 z^5 a^9+3 z^3 a^9-z a^9+3 z^8 a^8-2 z^6 a^8+3 z^2 a^8-2 a^8+z^9 a^7+6 z^7 a^7-14 z^5 a^7+7 z^3 a^7-z a^7+6 z^8 a^6-9 z^6 a^6-5 z^4 a^6+9 z^2 a^6-3 a^6+z^9 a^5+6 z^7 a^5-21 z^5 a^5+14 z^3 a^5-3 z a^5+3 z^8 a^4-5 z^6 a^4-4 z^4 a^4+6 z^2 a^4-a^4+3 z^7 a^3-9 z^5 a^3+7 z^3 a^3-z a^3+z^6 a^2-3 z^4 a^2+3 z^2 a^2-a^2 }[/math]
The A2 invariant Data:K11n103/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n103/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n10, K11n144,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n175,}

Vassiliev invariants

V2 and V3: (4, -9)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -72 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{1112}{3} }[/math] [math]\displaystyle{ \frac{160}{3} }[/math] [math]\displaystyle{ -1152 }[/math] [math]\displaystyle{ -2160 }[/math] [math]\displaystyle{ -352 }[/math] [math]\displaystyle{ -296 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 2592 }[/math] [math]\displaystyle{ \frac{17792}{3} }[/math] [math]\displaystyle{ \frac{2560}{3} }[/math] [math]\displaystyle{ \frac{193022}{15} }[/math] [math]\displaystyle{ \frac{1344}{5} }[/math] [math]\displaystyle{ \frac{221888}{45} }[/math] [math]\displaystyle{ \frac{1282}{9} }[/math] [math]\displaystyle{ \frac{9422}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11n103. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
1         11
-1        2 -2
-3       41 3
-5      53  -2
-7     63   3
-9    55    0
-11   56     -1
-13  35      2
-15 25       -3
-17 3        3
-192         -2
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n102.gif

K11n102

K11n104.gif

K11n104