K11n175
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X6271 X3,11,4,10 X5,17,6,16 X14,8,15,7 X9,21,10,20 X11,18,12,19 X13,3,14,2 X22,16,1,15 X17,12,18,13 X19,5,20,4 X21,9,22,8 |
| Gauss code | 1, 7, -2, 10, -3, -1, 4, 11, -5, 2, -6, 9, -7, -4, 8, 3, -9, 6, -10, 5, -11, -8 |
| Dowker-Thistlethwaite code | 6 -10 -16 14 -20 -18 -2 22 -12 -4 -8 |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+9 t^2-14 t+15-14 t^{-1} +9 t^{-2} -2 t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-3 z^4+4 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{2,t^2+t+1\right\}} |
| Determinant and Signature | { 65, 4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^9+5 q^8-8 q^7+10 q^6-11 q^5+11 q^4-8 q^3+6 q^2-3 q+1} |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -2 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +2 z^2 a^{-2} +2 z^2 a^{-4} -3 z^2 a^{-6} +3 z^2 a^{-8} +3 a^{-4} -3 a^{-6} +2 a^{-8} - a^{-10} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^9 a^{-5} +2 z^9 a^{-7} +4 z^8 a^{-4} +8 z^8 a^{-6} +4 z^8 a^{-8} +3 z^7 a^{-3} -z^7 a^{-5} -z^7 a^{-7} +3 z^7 a^{-9} +z^6 a^{-2} -12 z^6 a^{-4} -23 z^6 a^{-6} -9 z^6 a^{-8} +z^6 a^{-10} -9 z^5 a^{-3} -6 z^5 a^{-5} +z^5 a^{-7} -2 z^5 a^{-9} -3 z^4 a^{-2} +11 z^4 a^{-4} +25 z^4 a^{-6} +15 z^4 a^{-8} +4 z^4 a^{-10} +6 z^3 a^{-3} +2 z^3 a^{-5} -5 z^3 a^{-7} +2 z^3 a^{-9} +3 z^3 a^{-11} +2 z^2 a^{-2} -7 z^2 a^{-4} -15 z^2 a^{-6} -10 z^2 a^{-8} -4 z^2 a^{-10} +2 z a^{-7} -2 z a^{-11} +3 a^{-4} +3 a^{-6} +2 a^{-8} + a^{-10} } |
| The A2 invariant | Data:K11n175/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11n175/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11n175"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+9 t^2-14 t+15-14 t^{-1} +9 t^{-2} -2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-3 z^4+4 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{2,t^2+t+1\right\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 65, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^9+5 q^8-8 q^7+10 q^6-11 q^5+11 q^4-8 q^3+6 q^2-3 q+1} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -2 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +2 z^2 a^{-2} +2 z^2 a^{-4} -3 z^2 a^{-6} +3 z^2 a^{-8} +3 a^{-4} -3 a^{-6} +2 a^{-8} - a^{-10} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^9 a^{-5} +2 z^9 a^{-7} +4 z^8 a^{-4} +8 z^8 a^{-6} +4 z^8 a^{-8} +3 z^7 a^{-3} -z^7 a^{-5} -z^7 a^{-7} +3 z^7 a^{-9} +z^6 a^{-2} -12 z^6 a^{-4} -23 z^6 a^{-6} -9 z^6 a^{-8} +z^6 a^{-10} -9 z^5 a^{-3} -6 z^5 a^{-5} +z^5 a^{-7} -2 z^5 a^{-9} -3 z^4 a^{-2} +11 z^4 a^{-4} +25 z^4 a^{-6} +15 z^4 a^{-8} +4 z^4 a^{-10} +6 z^3 a^{-3} +2 z^3 a^{-5} -5 z^3 a^{-7} +2 z^3 a^{-9} +3 z^3 a^{-11} +2 z^2 a^{-2} -7 z^2 a^{-4} -15 z^2 a^{-6} -10 z^2 a^{-8} -4 z^2 a^{-10} +2 z a^{-7} -2 z a^{-11} +3 a^{-4} +3 a^{-6} +2 a^{-8} + a^{-10} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {K11n103,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11n175"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+9 t^2-14 t+15-14 t^{-1} +9 t^{-2} -2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^9+5 q^8-8 q^7+10 q^6-11 q^5+11 q^4-8 q^3+6 q^2-3 q+1} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n103,} |
Vassiliev invariants
| V2 and V3: | (4, 9) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of K11n175. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



