K11n10

From Knot Atlas
Jump to navigationJump to search

K11n9.gif

K11n9

K11n11.gif

K11n11

K11n10.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n10 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X10,6,11,5 X7,14,8,15 X2,9,3,10 X18,11,19,12 X13,6,14,7 X20,15,21,16 X22,17,1,18 X12,19,13,20 X16,21,17,22
Gauss code 1, -5, 2, -1, 3, 7, -4, -2, 5, -3, 6, -10, -7, 4, 8, -11, 9, -6, 10, -8, 11, -9
Dowker-Thistlethwaite code 4 8 10 -14 2 18 -6 20 22 12 16
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
A Morse Link Presentation K11n10 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 4

[edit Notes for K11n10's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+7 t^2-15 t+19-15 t^{-1} +7 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6+z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 65, -4 }
Jones polynomial [math]\displaystyle{ 2 q^{-2} -4 q^{-3} +8 q^{-4} -10 q^{-5} +11 q^{-6} -11 q^{-7} +9 q^{-8} -6 q^{-9} +3 q^{-10} - q^{-11} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^{10}-a^{10}+2 z^4 a^8+4 z^2 a^8+2 a^8-z^6 a^6-3 z^4 a^6-4 z^2 a^6-3 a^6+2 z^4 a^4+5 z^2 a^4+3 a^4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^5 a^{13}-2 z^3 a^{13}+z a^{13}+3 z^6 a^{12}-6 z^4 a^{12}+3 z^2 a^{12}+4 z^7 a^{11}-6 z^5 a^{11}+z^3 a^{11}+3 z^8 a^{10}-z^6 a^{10}-4 z^4 a^{10}+a^{10}+z^9 a^9+5 z^7 a^9-9 z^5 a^9+3 z^3 a^9+5 z^8 a^8-7 z^6 a^8+7 z^4 a^8-6 z^2 a^8+2 a^8+z^9 a^7+2 z^7 a^7-z^5 a^7-z^3 a^7+2 z^8 a^6-3 z^6 a^6+8 z^4 a^6-9 z^2 a^6+3 a^6+z^7 a^5+z^5 a^5-z^3 a^5-z a^5+3 z^4 a^4-6 z^2 a^4+3 a^4 }[/math]
The A2 invariant [math]\displaystyle{ -q^{34}+q^{30}-2 q^{28}+2 q^{26}-q^{22}+q^{20}-3 q^{18}+2 q^{16}-q^{14}+q^{12}+3 q^{10}-q^8+2 q^6 }[/math]
The G2 invariant Data:K11n10/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n103, K11n144,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n144,}

Vassiliev invariants

V2 and V3: (4, -9)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -72 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{1160}{3} }[/math] [math]\displaystyle{ \frac{160}{3} }[/math] [math]\displaystyle{ -1152 }[/math] [math]\displaystyle{ -2256 }[/math] [math]\displaystyle{ -384 }[/math] [math]\displaystyle{ -264 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 2592 }[/math] [math]\displaystyle{ \frac{18560}{3} }[/math] [math]\displaystyle{ \frac{2560}{3} }[/math] [math]\displaystyle{ \frac{203222}{15} }[/math] [math]\displaystyle{ \frac{9872}{15} }[/math] [math]\displaystyle{ \frac{212528}{45} }[/math] [math]\displaystyle{ \frac{778}{9} }[/math] [math]\displaystyle{ \frac{8582}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11n10. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         22
-5        31-2
-7       51 4
-9      53  -2
-11     65   1
-13    55    0
-15   46     -2
-17  25      3
-19 14       -3
-21 2        2
-231         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n9.gif

K11n9

K11n11.gif

K11n11