K11n9

From Knot Atlas
Jump to navigationJump to search

K11n8.gif

K11n8

K11n10.gif

K11n10

K11n9.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n9 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X10,6,11,5 X14,8,15,7 X2,9,3,10 X11,19,12,18 X6,14,7,13 X15,21,16,20 X17,1,18,22 X19,13,20,12 X21,17,22,16
Gauss code 1, -5, 2, -1, 3, -7, 4, -2, 5, -3, -6, 10, 7, -4, -8, 11, -9, 6, -10, 8, -11, 9
Dowker-Thistlethwaite code 4 8 10 14 2 -18 6 -20 -22 -12 -16
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation K11n9 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -6

[edit Notes for K11n9's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^4+3 t^3-t^2-4 t+7-4 t^{-1} - t^{-2} +3 t^{-3} - t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ -z^8-5 z^6-3 z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 5, 4 }
Jones polynomial [math]\displaystyle{ -q^{11}+2 q^{10}-2 q^9+2 q^8-2 q^7+q^6-q^4+2 q^3-q^2+q }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -16 z^4 a^{-6} +7 z^4 a^{-8} +10 z^2 a^{-4} -17 z^2 a^{-6} +12 z^2 a^{-8} -2 z^2 a^{-10} +5 a^{-4} -8 a^{-6} +6 a^{-8} -2 a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-5} +z^9 a^{-7} +z^8 a^{-4} +3 z^8 a^{-6} +2 z^8 a^{-8} -6 z^7 a^{-5} -6 z^7 a^{-7} +z^7 a^{-9} +z^7 a^{-11} -7 z^6 a^{-4} -21 z^6 a^{-6} -15 z^6 a^{-8} +z^6 a^{-10} +2 z^6 a^{-12} +9 z^5 a^{-5} +6 z^5 a^{-7} -7 z^5 a^{-9} -3 z^5 a^{-11} +z^5 a^{-13} +16 z^4 a^{-4} +43 z^4 a^{-6} +31 z^4 a^{-8} -3 z^4 a^{-10} -7 z^4 a^{-12} -2 z^3 a^{-5} +5 z^3 a^{-7} +11 z^3 a^{-9} +z^3 a^{-11} -3 z^3 a^{-13} -15 z^2 a^{-4} -32 z^2 a^{-6} -22 z^2 a^{-8} -z^2 a^{-10} +4 z^2 a^{-12} -2 z a^{-5} -4 z a^{-7} -4 z a^{-9} -z a^{-11} +z a^{-13} +5 a^{-4} +8 a^{-6} +6 a^{-8} +2 a^{-10} }[/math]
The A2 invariant [math]\displaystyle{ q^{-4} + q^{-6} + q^{-8} +2 q^{-10} + q^{-12} - q^{-14} - q^{-16} - q^{-18} -2 q^{-20} + q^{-22} +2 q^{-26} + q^{-32} -2 q^{-34} }[/math]
The G2 invariant Data:K11n9/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (3, 7)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 56 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 318 }[/math] [math]\displaystyle{ 58 }[/math] [math]\displaystyle{ 672 }[/math] [math]\displaystyle{ \frac{5264}{3} }[/math] [math]\displaystyle{ \frac{992}{3} }[/math] [math]\displaystyle{ 248 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 1568 }[/math] [math]\displaystyle{ 3816 }[/math] [math]\displaystyle{ 696 }[/math] [math]\displaystyle{ \frac{97551}{10} }[/math] [math]\displaystyle{ \frac{5054}{15} }[/math] [math]\displaystyle{ \frac{57542}{15} }[/math] [math]\displaystyle{ \frac{593}{6} }[/math] [math]\displaystyle{ \frac{4751}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11n9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          1 1
19         11 0
17       121  0
15      121   0
13     122    -1
11    122     1
9   111      -1
7  111       1
5 12         1
3            0
11           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n8.gif

K11n8

K11n10.gif

K11n10