10 118: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- -->
k = 118 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,6,-10,2,-1,5,-6,9,-8,10,-4,3,-5,7,-9,8,-2,4,-3/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=118|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,6,-10,2,-1,5,-6,9,-8,10,-4,3,-5,7,-9,8,-2,4,-3/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 10, width is 3.
braid_index = 3 |

same_alexander = [[K11a257]], |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11a257]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>3</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>3</td></tr>
Line 72: Line 36:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{15}-4 q^{14}+3 q^{13}+11 q^{12}-27 q^{11}+8 q^{10}+52 q^9-76 q^8-8 q^7+130 q^6-122 q^5-55 q^4+208 q^3-134 q^2-107 q+241-107 q^{-1} -134 q^{-2} +208 q^{-3} -55 q^{-4} -122 q^{-5} +130 q^{-6} -8 q^{-7} -76 q^{-8} +52 q^{-9} +8 q^{-10} -27 q^{-11} +11 q^{-12} +3 q^{-13} -4 q^{-14} + q^{-15} </math> |

coloured_jones_3 = <math>-q^{30}+4 q^{29}-3 q^{28}-6 q^{27}+4 q^{26}+18 q^{25}-9 q^{24}-48 q^{23}+21 q^{22}+99 q^{21}-14 q^{20}-194 q^{19}-26 q^{18}+323 q^{17}+129 q^{16}-466 q^{15}-307 q^{14}+582 q^{13}+562 q^{12}-650 q^{11}-851 q^{10}+639 q^9+1148 q^8-565 q^7-1402 q^6+430 q^5+1603 q^4-274 q^3-1714 q^2+84 q+1769+84 q^{-1} -1714 q^{-2} -274 q^{-3} +1603 q^{-4} +430 q^{-5} -1402 q^{-6} -565 q^{-7} +1148 q^{-8} +639 q^{-9} -851 q^{-10} -650 q^{-11} +562 q^{-12} +582 q^{-13} -307 q^{-14} -466 q^{-15} +129 q^{-16} +323 q^{-17} -26 q^{-18} -194 q^{-19} -14 q^{-20} +99 q^{-21} +21 q^{-22} -48 q^{-23} -9 q^{-24} +18 q^{-25} +4 q^{-26} -6 q^{-27} -3 q^{-28} +4 q^{-29} - q^{-30} </math> |
{{Display Coloured Jones|J2=<math>q^{15}-4 q^{14}+3 q^{13}+11 q^{12}-27 q^{11}+8 q^{10}+52 q^9-76 q^8-8 q^7+130 q^6-122 q^5-55 q^4+208 q^3-134 q^2-107 q+241-107 q^{-1} -134 q^{-2} +208 q^{-3} -55 q^{-4} -122 q^{-5} +130 q^{-6} -8 q^{-7} -76 q^{-8} +52 q^{-9} +8 q^{-10} -27 q^{-11} +11 q^{-12} +3 q^{-13} -4 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+4 q^{29}-3 q^{28}-6 q^{27}+4 q^{26}+18 q^{25}-9 q^{24}-48 q^{23}+21 q^{22}+99 q^{21}-14 q^{20}-194 q^{19}-26 q^{18}+323 q^{17}+129 q^{16}-466 q^{15}-307 q^{14}+582 q^{13}+562 q^{12}-650 q^{11}-851 q^{10}+639 q^9+1148 q^8-565 q^7-1402 q^6+430 q^5+1603 q^4-274 q^3-1714 q^2+84 q+1769+84 q^{-1} -1714 q^{-2} -274 q^{-3} +1603 q^{-4} +430 q^{-5} -1402 q^{-6} -565 q^{-7} +1148 q^{-8} +639 q^{-9} -851 q^{-10} -650 q^{-11} +562 q^{-12} +582 q^{-13} -307 q^{-14} -466 q^{-15} +129 q^{-16} +323 q^{-17} -26 q^{-18} -194 q^{-19} -14 q^{-20} +99 q^{-21} +21 q^{-22} -48 q^{-23} -9 q^{-24} +18 q^{-25} +4 q^{-26} -6 q^{-27} -3 q^{-28} +4 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-4 q^{49}+3 q^{48}+6 q^{47}-9 q^{46}+5 q^{45}-17 q^{44}+22 q^{43}+31 q^{42}-60 q^{41}-4 q^{40}-61 q^{39}+131 q^{38}+193 q^{37}-192 q^{36}-199 q^{35}-372 q^{34}+386 q^{33}+907 q^{32}-7 q^{31}-645 q^{30}-1686 q^{29}+78 q^{28}+2318 q^{27}+1584 q^{26}-286 q^{25}-4171 q^{24}-2229 q^{23}+2995 q^{22}+4722 q^{21}+2593 q^{20}-6078 q^{19}-6548 q^{18}+1037 q^{17}+7450 q^{16}+7776 q^{15}-5461 q^{14}-10670 q^{13}-3245 q^{12}+7881 q^{11}+12898 q^{10}-2626 q^9-12675 q^8-7693 q^7+6233 q^6+16074 q^5+739 q^4-12520 q^3-10838 q^2+3699 q+17069+3699 q^{-1} -10838 q^{-2} -12520 q^{-3} +739 q^{-4} +16074 q^{-5} +6233 q^{-6} -7693 q^{-7} -12675 q^{-8} -2626 q^{-9} +12898 q^{-10} +7881 q^{-11} -3245 q^{-12} -10670 q^{-13} -5461 q^{-14} +7776 q^{-15} +7450 q^{-16} +1037 q^{-17} -6548 q^{-18} -6078 q^{-19} +2593 q^{-20} +4722 q^{-21} +2995 q^{-22} -2229 q^{-23} -4171 q^{-24} -286 q^{-25} +1584 q^{-26} +2318 q^{-27} +78 q^{-28} -1686 q^{-29} -645 q^{-30} -7 q^{-31} +907 q^{-32} +386 q^{-33} -372 q^{-34} -199 q^{-35} -192 q^{-36} +193 q^{-37} +131 q^{-38} -61 q^{-39} -4 q^{-40} -60 q^{-41} +31 q^{-42} +22 q^{-43} -17 q^{-44} +5 q^{-45} -9 q^{-46} +6 q^{-47} +3 q^{-48} -4 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+4 q^{74}-3 q^{73}-6 q^{72}+9 q^{71}-6 q^{69}+4 q^{68}-5 q^{67}-9 q^{66}+37 q^{65}+29 q^{64}-48 q^{63}-83 q^{62}-68 q^{61}+46 q^{60}+244 q^{59}+301 q^{58}-24 q^{57}-573 q^{56}-787 q^{55}-287 q^{54}+875 q^{53}+1843 q^{52}+1364 q^{51}-921 q^{50}-3428 q^{49}-3602 q^{48}-259 q^{47}+4964 q^{46}+7568 q^{45}+3700 q^{44}-5394 q^{43}-12667 q^{42}-10365 q^{41}+2685 q^{40}+17588 q^{39}+20463 q^{38}+4813 q^{37}-19877 q^{36}-32656 q^{35}-18124 q^{34}+16897 q^{33}+44345 q^{32}+36630 q^{31}-6744 q^{30}-52443 q^{29}-57942 q^{28}-10715 q^{27}+54076 q^{26}+78732 q^{25}+34017 q^{24}-48179 q^{23}-95785 q^{22}-59901 q^{21}+35233 q^{20}+106740 q^{19}+85226 q^{18}-17417 q^{17}-111131 q^{16}-107011 q^{15}-2543 q^{14}+109646 q^{13}+123904 q^{12}+22010 q^{11}-104034 q^{10}-135442 q^9-39509 q^8+96005 q^7+142679 q^6+54100 q^5-86907 q^4-146180 q^3-66504 q^2+77050 q+147507+77050 q^{-1} -66504 q^{-2} -146180 q^{-3} -86907 q^{-4} +54100 q^{-5} +142679 q^{-6} +96005 q^{-7} -39509 q^{-8} -135442 q^{-9} -104034 q^{-10} +22010 q^{-11} +123904 q^{-12} +109646 q^{-13} -2543 q^{-14} -107011 q^{-15} -111131 q^{-16} -17417 q^{-17} +85226 q^{-18} +106740 q^{-19} +35233 q^{-20} -59901 q^{-21} -95785 q^{-22} -48179 q^{-23} +34017 q^{-24} +78732 q^{-25} +54076 q^{-26} -10715 q^{-27} -57942 q^{-28} -52443 q^{-29} -6744 q^{-30} +36630 q^{-31} +44345 q^{-32} +16897 q^{-33} -18124 q^{-34} -32656 q^{-35} -19877 q^{-36} +4813 q^{-37} +20463 q^{-38} +17588 q^{-39} +2685 q^{-40} -10365 q^{-41} -12667 q^{-42} -5394 q^{-43} +3700 q^{-44} +7568 q^{-45} +4964 q^{-46} -259 q^{-47} -3602 q^{-48} -3428 q^{-49} -921 q^{-50} +1364 q^{-51} +1843 q^{-52} +875 q^{-53} -287 q^{-54} -787 q^{-55} -573 q^{-56} -24 q^{-57} +301 q^{-58} +244 q^{-59} +46 q^{-60} -68 q^{-61} -83 q^{-62} -48 q^{-63} +29 q^{-64} +37 q^{-65} -9 q^{-66} -5 q^{-67} +4 q^{-68} -6 q^{-69} +9 q^{-71} -6 q^{-72} -3 q^{-73} +4 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-4 q^{104}+3 q^{103}+6 q^{102}-9 q^{101}+q^{99}+19 q^{98}-21 q^{97}-17 q^{96}+32 q^{95}-45 q^{94}+8 q^{93}+50 q^{92}+128 q^{91}-41 q^{90}-167 q^{89}-62 q^{88}-286 q^{87}-16 q^{86}+387 q^{85}+900 q^{84}+404 q^{83}-424 q^{82}-881 q^{81}-2094 q^{80}-1401 q^{79}+650 q^{78}+3938 q^{77}+4458 q^{76}+2396 q^{75}-1204 q^{74}-8305 q^{73}-10766 q^{72}-6703 q^{71}+5801 q^{70}+16461 q^{69}+20757 q^{68}+14405 q^{67}-9709 q^{66}-33262 q^{65}-42976 q^{64}-22056 q^{63}+15948 q^{62}+58065 q^{61}+77950 q^{60}+42156 q^{59}-29551 q^{58}-104768 q^{57}-122544 q^{56}-71254 q^{55}+47281 q^{54}+171007 q^{53}+198422 q^{52}+103304 q^{51}-89064 q^{50}-253004 q^{49}-297475 q^{48}-141664 q^{47}+149780 q^{46}+383153 q^{45}+408243 q^{44}+154486 q^{43}-230153 q^{42}-546632 q^{41}-530354 q^{40}-143910 q^{39}+380359 q^{38}+726609 q^{37}+615539 q^{36}+96521 q^{35}-581428 q^{34}-920446 q^{33}-660120 q^{32}+60354 q^{31}+813628 q^{30}+1064305 q^{29}+635918 q^{28}-301929 q^{27}-1072972 q^{26}-1148980 q^{25}-451384 q^{24}+602132 q^{23}+1278685 q^{22}+1132696 q^{21}+144123 q^{20}-950647 q^{19}-1413224 q^{18}-910924 q^{17}+247709 q^{16}+1245688 q^{15}+1420940 q^{14}+538462 q^{13}-703247 q^{12}-1458570 q^{11}-1189250 q^{10}-66498 q^9+1100658 q^8+1522082 q^7+790633 q^6-474803 q^5-1403113 q^4-1322934 q^3-286649 q^2+950870 q+1538859+950870 q^{-1} -286649 q^{-2} -1322934 q^{-3} -1403113 q^{-4} -474803 q^{-5} +790633 q^{-6} +1522082 q^{-7} +1100658 q^{-8} -66498 q^{-9} -1189250 q^{-10} -1458570 q^{-11} -703247 q^{-12} +538462 q^{-13} +1420940 q^{-14} +1245688 q^{-15} +247709 q^{-16} -910924 q^{-17} -1413224 q^{-18} -950647 q^{-19} +144123 q^{-20} +1132696 q^{-21} +1278685 q^{-22} +602132 q^{-23} -451384 q^{-24} -1148980 q^{-25} -1072972 q^{-26} -301929 q^{-27} +635918 q^{-28} +1064305 q^{-29} +813628 q^{-30} +60354 q^{-31} -660120 q^{-32} -920446 q^{-33} -581428 q^{-34} +96521 q^{-35} +615539 q^{-36} +726609 q^{-37} +380359 q^{-38} -143910 q^{-39} -530354 q^{-40} -546632 q^{-41} -230153 q^{-42} +154486 q^{-43} +408243 q^{-44} +383153 q^{-45} +149780 q^{-46} -141664 q^{-47} -297475 q^{-48} -253004 q^{-49} -89064 q^{-50} +103304 q^{-51} +198422 q^{-52} +171007 q^{-53} +47281 q^{-54} -71254 q^{-55} -122544 q^{-56} -104768 q^{-57} -29551 q^{-58} +42156 q^{-59} +77950 q^{-60} +58065 q^{-61} +15948 q^{-62} -22056 q^{-63} -42976 q^{-64} -33262 q^{-65} -9709 q^{-66} +14405 q^{-67} +20757 q^{-68} +16461 q^{-69} +5801 q^{-70} -6703 q^{-71} -10766 q^{-72} -8305 q^{-73} -1204 q^{-74} +2396 q^{-75} +4458 q^{-76} +3938 q^{-77} +650 q^{-78} -1401 q^{-79} -2094 q^{-80} -881 q^{-81} -424 q^{-82} +404 q^{-83} +900 q^{-84} +387 q^{-85} -16 q^{-86} -286 q^{-87} -62 q^{-88} -167 q^{-89} -41 q^{-90} +128 q^{-91} +50 q^{-92} +8 q^{-93} -45 q^{-94} +32 q^{-95} -17 q^{-96} -21 q^{-97} +19 q^{-98} + q^{-99} -9 q^{-101} +6 q^{-102} +3 q^{-103} -4 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+4 q^{139}-3 q^{138}-6 q^{137}+9 q^{136}-q^{134}-14 q^{133}-2 q^{132}+43 q^{131}-6 q^{130}-24 q^{129}+8 q^{128}-27 q^{127}-23 q^{126}-69 q^{125}-8 q^{124}+242 q^{123}+163 q^{122}+35 q^{121}-72 q^{120}-385 q^{119}-411 q^{118}-518 q^{117}-142 q^{116}+1078 q^{115}+1554 q^{114}+1474 q^{113}+483 q^{112}-1739 q^{111}-3318 q^{110}-4454 q^{109}-3310 q^{108}+1813 q^{107}+7114 q^{106}+11157 q^{105}+10245 q^{104}+1633 q^{103}-9940 q^{102}-22433 q^{101}-27507 q^{100}-16520 q^{99}+6677 q^{98}+37057 q^{97}+58407 q^{96}+52468 q^{95}+18370 q^{94}-40973 q^{93}-100446 q^{92}-122513 q^{91}-89098 q^{90}+7781 q^{89}+133531 q^{88}+223614 q^{87}+228198 q^{86}+109054 q^{85}-106363 q^{84}-325147 q^{83}-443178 q^{82}-356501 q^{81}-55497 q^{80}+349552 q^{79}+689017 q^{78}+753321 q^{77}+439152 q^{76}-173905 q^{75}-857942 q^{74}-1254288 q^{73}-1089251 q^{72}-333822 q^{71}+773753 q^{70}+1714946 q^{69}+1964892 q^{68}+1265562 q^{67}-240851 q^{66}-1909001 q^{65}-2902350 q^{64}-2597945 q^{63}-884016 q^{62}+1573715 q^{61}+3625400 q^{60}+4160778 q^{59}+2617311 q^{58}-502842 q^{57}-3814742 q^{56}-5650023 q^{55}-4799031 q^{54}-1364682 q^{53}+3202185 q^{52}+6697142 q^{51}+7115131 q^{50}+3902842 q^{49}-1670439 q^{48}-6984275 q^{47}-9173314 q^{46}-6807311 q^{45}-696117 q^{44}+6335550 q^{43}+10610793 q^{42}+9681809 q^{41}+3632710 q^{40}-4775784 q^{39}-11201786 q^{38}-12142587 q^{37}-6760636 q^{36}+2515244 q^{35}+10900762 q^{34}+13915945 q^{33}+9700418 q^{32}+121154 q^{31}-9843831 q^{30}-14895676 q^{29}-12155512 q^{28}-2782605 q^{27}+8283604 q^{26}+15135646 q^{25}+13970837 q^{24}+5181766 q^{23}-6511733 q^{22}-14808343 q^{21}-15135897 q^{20}-7142924 q^{19}+4783786 q^{18}+14138213 q^{17}+15752305 q^{16}+8612048 q^{15}-3272853 q^{14}-13335658 q^{13}-15980950 q^{12}-9641991 q^{11}+2050425 q^{10}+12561147 q^9+15997522 q^8+10346608 q^7-1103802 q^6-11896387 q^5-15942378 q^4-10871239 q^3+344203 q^2+11352146 q+15915633+11352146 q^{-1} +344203 q^{-2} -10871239 q^{-3} -15942378 q^{-4} -11896387 q^{-5} -1103802 q^{-6} +10346608 q^{-7} +15997522 q^{-8} +12561147 q^{-9} +2050425 q^{-10} -9641991 q^{-11} -15980950 q^{-12} -13335658 q^{-13} -3272853 q^{-14} +8612048 q^{-15} +15752305 q^{-16} +14138213 q^{-17} +4783786 q^{-18} -7142924 q^{-19} -15135897 q^{-20} -14808343 q^{-21} -6511733 q^{-22} +5181766 q^{-23} +13970837 q^{-24} +15135646 q^{-25} +8283604 q^{-26} -2782605 q^{-27} -12155512 q^{-28} -14895676 q^{-29} -9843831 q^{-30} +121154 q^{-31} +9700418 q^{-32} +13915945 q^{-33} +10900762 q^{-34} +2515244 q^{-35} -6760636 q^{-36} -12142587 q^{-37} -11201786 q^{-38} -4775784 q^{-39} +3632710 q^{-40} +9681809 q^{-41} +10610793 q^{-42} +6335550 q^{-43} -696117 q^{-44} -6807311 q^{-45} -9173314 q^{-46} -6984275 q^{-47} -1670439 q^{-48} +3902842 q^{-49} +7115131 q^{-50} +6697142 q^{-51} +3202185 q^{-52} -1364682 q^{-53} -4799031 q^{-54} -5650023 q^{-55} -3814742 q^{-56} -502842 q^{-57} +2617311 q^{-58} +4160778 q^{-59} +3625400 q^{-60} +1573715 q^{-61} -884016 q^{-62} -2597945 q^{-63} -2902350 q^{-64} -1909001 q^{-65} -240851 q^{-66} +1265562 q^{-67} +1964892 q^{-68} +1714946 q^{-69} +773753 q^{-70} -333822 q^{-71} -1089251 q^{-72} -1254288 q^{-73} -857942 q^{-74} -173905 q^{-75} +439152 q^{-76} +753321 q^{-77} +689017 q^{-78} +349552 q^{-79} -55497 q^{-80} -356501 q^{-81} -443178 q^{-82} -325147 q^{-83} -106363 q^{-84} +109054 q^{-85} +228198 q^{-86} +223614 q^{-87} +133531 q^{-88} +7781 q^{-89} -89098 q^{-90} -122513 q^{-91} -100446 q^{-92} -40973 q^{-93} +18370 q^{-94} +52468 q^{-95} +58407 q^{-96} +37057 q^{-97} +6677 q^{-98} -16520 q^{-99} -27507 q^{-100} -22433 q^{-101} -9940 q^{-102} +1633 q^{-103} +10245 q^{-104} +11157 q^{-105} +7114 q^{-106} +1813 q^{-107} -3310 q^{-108} -4454 q^{-109} -3318 q^{-110} -1739 q^{-111} +483 q^{-112} +1474 q^{-113} +1554 q^{-114} +1078 q^{-115} -142 q^{-116} -518 q^{-117} -411 q^{-118} -385 q^{-119} -72 q^{-120} +35 q^{-121} +163 q^{-122} +242 q^{-123} -8 q^{-124} -69 q^{-125} -23 q^{-126} -27 q^{-127} +8 q^{-128} -24 q^{-129} -6 q^{-130} +43 q^{-131} -2 q^{-132} -14 q^{-133} - q^{-134} +9 q^{-136} -6 q^{-137} -3 q^{-138} +4 q^{-139} - q^{-140} </math>}}
coloured_jones_4 = <math>q^{50}-4 q^{49}+3 q^{48}+6 q^{47}-9 q^{46}+5 q^{45}-17 q^{44}+22 q^{43}+31 q^{42}-60 q^{41}-4 q^{40}-61 q^{39}+131 q^{38}+193 q^{37}-192 q^{36}-199 q^{35}-372 q^{34}+386 q^{33}+907 q^{32}-7 q^{31}-645 q^{30}-1686 q^{29}+78 q^{28}+2318 q^{27}+1584 q^{26}-286 q^{25}-4171 q^{24}-2229 q^{23}+2995 q^{22}+4722 q^{21}+2593 q^{20}-6078 q^{19}-6548 q^{18}+1037 q^{17}+7450 q^{16}+7776 q^{15}-5461 q^{14}-10670 q^{13}-3245 q^{12}+7881 q^{11}+12898 q^{10}-2626 q^9-12675 q^8-7693 q^7+6233 q^6+16074 q^5+739 q^4-12520 q^3-10838 q^2+3699 q+17069+3699 q^{-1} -10838 q^{-2} -12520 q^{-3} +739 q^{-4} +16074 q^{-5} +6233 q^{-6} -7693 q^{-7} -12675 q^{-8} -2626 q^{-9} +12898 q^{-10} +7881 q^{-11} -3245 q^{-12} -10670 q^{-13} -5461 q^{-14} +7776 q^{-15} +7450 q^{-16} +1037 q^{-17} -6548 q^{-18} -6078 q^{-19} +2593 q^{-20} +4722 q^{-21} +2995 q^{-22} -2229 q^{-23} -4171 q^{-24} -286 q^{-25} +1584 q^{-26} +2318 q^{-27} +78 q^{-28} -1686 q^{-29} -645 q^{-30} -7 q^{-31} +907 q^{-32} +386 q^{-33} -372 q^{-34} -199 q^{-35} -192 q^{-36} +193 q^{-37} +131 q^{-38} -61 q^{-39} -4 q^{-40} -60 q^{-41} +31 q^{-42} +22 q^{-43} -17 q^{-44} +5 q^{-45} -9 q^{-46} +6 q^{-47} +3 q^{-48} -4 q^{-49} + q^{-50} </math> |

coloured_jones_5 = <math>-q^{75}+4 q^{74}-3 q^{73}-6 q^{72}+9 q^{71}-6 q^{69}+4 q^{68}-5 q^{67}-9 q^{66}+37 q^{65}+29 q^{64}-48 q^{63}-83 q^{62}-68 q^{61}+46 q^{60}+244 q^{59}+301 q^{58}-24 q^{57}-573 q^{56}-787 q^{55}-287 q^{54}+875 q^{53}+1843 q^{52}+1364 q^{51}-921 q^{50}-3428 q^{49}-3602 q^{48}-259 q^{47}+4964 q^{46}+7568 q^{45}+3700 q^{44}-5394 q^{43}-12667 q^{42}-10365 q^{41}+2685 q^{40}+17588 q^{39}+20463 q^{38}+4813 q^{37}-19877 q^{36}-32656 q^{35}-18124 q^{34}+16897 q^{33}+44345 q^{32}+36630 q^{31}-6744 q^{30}-52443 q^{29}-57942 q^{28}-10715 q^{27}+54076 q^{26}+78732 q^{25}+34017 q^{24}-48179 q^{23}-95785 q^{22}-59901 q^{21}+35233 q^{20}+106740 q^{19}+85226 q^{18}-17417 q^{17}-111131 q^{16}-107011 q^{15}-2543 q^{14}+109646 q^{13}+123904 q^{12}+22010 q^{11}-104034 q^{10}-135442 q^9-39509 q^8+96005 q^7+142679 q^6+54100 q^5-86907 q^4-146180 q^3-66504 q^2+77050 q+147507+77050 q^{-1} -66504 q^{-2} -146180 q^{-3} -86907 q^{-4} +54100 q^{-5} +142679 q^{-6} +96005 q^{-7} -39509 q^{-8} -135442 q^{-9} -104034 q^{-10} +22010 q^{-11} +123904 q^{-12} +109646 q^{-13} -2543 q^{-14} -107011 q^{-15} -111131 q^{-16} -17417 q^{-17} +85226 q^{-18} +106740 q^{-19} +35233 q^{-20} -59901 q^{-21} -95785 q^{-22} -48179 q^{-23} +34017 q^{-24} +78732 q^{-25} +54076 q^{-26} -10715 q^{-27} -57942 q^{-28} -52443 q^{-29} -6744 q^{-30} +36630 q^{-31} +44345 q^{-32} +16897 q^{-33} -18124 q^{-34} -32656 q^{-35} -19877 q^{-36} +4813 q^{-37} +20463 q^{-38} +17588 q^{-39} +2685 q^{-40} -10365 q^{-41} -12667 q^{-42} -5394 q^{-43} +3700 q^{-44} +7568 q^{-45} +4964 q^{-46} -259 q^{-47} -3602 q^{-48} -3428 q^{-49} -921 q^{-50} +1364 q^{-51} +1843 q^{-52} +875 q^{-53} -287 q^{-54} -787 q^{-55} -573 q^{-56} -24 q^{-57} +301 q^{-58} +244 q^{-59} +46 q^{-60} -68 q^{-61} -83 q^{-62} -48 q^{-63} +29 q^{-64} +37 q^{-65} -9 q^{-66} -5 q^{-67} +4 q^{-68} -6 q^{-69} +9 q^{-71} -6 q^{-72} -3 q^{-73} +4 q^{-74} - q^{-75} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{105}-4 q^{104}+3 q^{103}+6 q^{102}-9 q^{101}+q^{99}+19 q^{98}-21 q^{97}-17 q^{96}+32 q^{95}-45 q^{94}+8 q^{93}+50 q^{92}+128 q^{91}-41 q^{90}-167 q^{89}-62 q^{88}-286 q^{87}-16 q^{86}+387 q^{85}+900 q^{84}+404 q^{83}-424 q^{82}-881 q^{81}-2094 q^{80}-1401 q^{79}+650 q^{78}+3938 q^{77}+4458 q^{76}+2396 q^{75}-1204 q^{74}-8305 q^{73}-10766 q^{72}-6703 q^{71}+5801 q^{70}+16461 q^{69}+20757 q^{68}+14405 q^{67}-9709 q^{66}-33262 q^{65}-42976 q^{64}-22056 q^{63}+15948 q^{62}+58065 q^{61}+77950 q^{60}+42156 q^{59}-29551 q^{58}-104768 q^{57}-122544 q^{56}-71254 q^{55}+47281 q^{54}+171007 q^{53}+198422 q^{52}+103304 q^{51}-89064 q^{50}-253004 q^{49}-297475 q^{48}-141664 q^{47}+149780 q^{46}+383153 q^{45}+408243 q^{44}+154486 q^{43}-230153 q^{42}-546632 q^{41}-530354 q^{40}-143910 q^{39}+380359 q^{38}+726609 q^{37}+615539 q^{36}+96521 q^{35}-581428 q^{34}-920446 q^{33}-660120 q^{32}+60354 q^{31}+813628 q^{30}+1064305 q^{29}+635918 q^{28}-301929 q^{27}-1072972 q^{26}-1148980 q^{25}-451384 q^{24}+602132 q^{23}+1278685 q^{22}+1132696 q^{21}+144123 q^{20}-950647 q^{19}-1413224 q^{18}-910924 q^{17}+247709 q^{16}+1245688 q^{15}+1420940 q^{14}+538462 q^{13}-703247 q^{12}-1458570 q^{11}-1189250 q^{10}-66498 q^9+1100658 q^8+1522082 q^7+790633 q^6-474803 q^5-1403113 q^4-1322934 q^3-286649 q^2+950870 q+1538859+950870 q^{-1} -286649 q^{-2} -1322934 q^{-3} -1403113 q^{-4} -474803 q^{-5} +790633 q^{-6} +1522082 q^{-7} +1100658 q^{-8} -66498 q^{-9} -1189250 q^{-10} -1458570 q^{-11} -703247 q^{-12} +538462 q^{-13} +1420940 q^{-14} +1245688 q^{-15} +247709 q^{-16} -910924 q^{-17} -1413224 q^{-18} -950647 q^{-19} +144123 q^{-20} +1132696 q^{-21} +1278685 q^{-22} +602132 q^{-23} -451384 q^{-24} -1148980 q^{-25} -1072972 q^{-26} -301929 q^{-27} +635918 q^{-28} +1064305 q^{-29} +813628 q^{-30} +60354 q^{-31} -660120 q^{-32} -920446 q^{-33} -581428 q^{-34} +96521 q^{-35} +615539 q^{-36} +726609 q^{-37} +380359 q^{-38} -143910 q^{-39} -530354 q^{-40} -546632 q^{-41} -230153 q^{-42} +154486 q^{-43} +408243 q^{-44} +383153 q^{-45} +149780 q^{-46} -141664 q^{-47} -297475 q^{-48} -253004 q^{-49} -89064 q^{-50} +103304 q^{-51} +198422 q^{-52} +171007 q^{-53} +47281 q^{-54} -71254 q^{-55} -122544 q^{-56} -104768 q^{-57} -29551 q^{-58} +42156 q^{-59} +77950 q^{-60} +58065 q^{-61} +15948 q^{-62} -22056 q^{-63} -42976 q^{-64} -33262 q^{-65} -9709 q^{-66} +14405 q^{-67} +20757 q^{-68} +16461 q^{-69} +5801 q^{-70} -6703 q^{-71} -10766 q^{-72} -8305 q^{-73} -1204 q^{-74} +2396 q^{-75} +4458 q^{-76} +3938 q^{-77} +650 q^{-78} -1401 q^{-79} -2094 q^{-80} -881 q^{-81} -424 q^{-82} +404 q^{-83} +900 q^{-84} +387 q^{-85} -16 q^{-86} -286 q^{-87} -62 q^{-88} -167 q^{-89} -41 q^{-90} +128 q^{-91} +50 q^{-92} +8 q^{-93} -45 q^{-94} +32 q^{-95} -17 q^{-96} -21 q^{-97} +19 q^{-98} + q^{-99} -9 q^{-101} +6 q^{-102} +3 q^{-103} -4 q^{-104} + q^{-105} </math> |

coloured_jones_7 = <math>-q^{140}+4 q^{139}-3 q^{138}-6 q^{137}+9 q^{136}-q^{134}-14 q^{133}-2 q^{132}+43 q^{131}-6 q^{130}-24 q^{129}+8 q^{128}-27 q^{127}-23 q^{126}-69 q^{125}-8 q^{124}+242 q^{123}+163 q^{122}+35 q^{121}-72 q^{120}-385 q^{119}-411 q^{118}-518 q^{117}-142 q^{116}+1078 q^{115}+1554 q^{114}+1474 q^{113}+483 q^{112}-1739 q^{111}-3318 q^{110}-4454 q^{109}-3310 q^{108}+1813 q^{107}+7114 q^{106}+11157 q^{105}+10245 q^{104}+1633 q^{103}-9940 q^{102}-22433 q^{101}-27507 q^{100}-16520 q^{99}+6677 q^{98}+37057 q^{97}+58407 q^{96}+52468 q^{95}+18370 q^{94}-40973 q^{93}-100446 q^{92}-122513 q^{91}-89098 q^{90}+7781 q^{89}+133531 q^{88}+223614 q^{87}+228198 q^{86}+109054 q^{85}-106363 q^{84}-325147 q^{83}-443178 q^{82}-356501 q^{81}-55497 q^{80}+349552 q^{79}+689017 q^{78}+753321 q^{77}+439152 q^{76}-173905 q^{75}-857942 q^{74}-1254288 q^{73}-1089251 q^{72}-333822 q^{71}+773753 q^{70}+1714946 q^{69}+1964892 q^{68}+1265562 q^{67}-240851 q^{66}-1909001 q^{65}-2902350 q^{64}-2597945 q^{63}-884016 q^{62}+1573715 q^{61}+3625400 q^{60}+4160778 q^{59}+2617311 q^{58}-502842 q^{57}-3814742 q^{56}-5650023 q^{55}-4799031 q^{54}-1364682 q^{53}+3202185 q^{52}+6697142 q^{51}+7115131 q^{50}+3902842 q^{49}-1670439 q^{48}-6984275 q^{47}-9173314 q^{46}-6807311 q^{45}-696117 q^{44}+6335550 q^{43}+10610793 q^{42}+9681809 q^{41}+3632710 q^{40}-4775784 q^{39}-11201786 q^{38}-12142587 q^{37}-6760636 q^{36}+2515244 q^{35}+10900762 q^{34}+13915945 q^{33}+9700418 q^{32}+121154 q^{31}-9843831 q^{30}-14895676 q^{29}-12155512 q^{28}-2782605 q^{27}+8283604 q^{26}+15135646 q^{25}+13970837 q^{24}+5181766 q^{23}-6511733 q^{22}-14808343 q^{21}-15135897 q^{20}-7142924 q^{19}+4783786 q^{18}+14138213 q^{17}+15752305 q^{16}+8612048 q^{15}-3272853 q^{14}-13335658 q^{13}-15980950 q^{12}-9641991 q^{11}+2050425 q^{10}+12561147 q^9+15997522 q^8+10346608 q^7-1103802 q^6-11896387 q^5-15942378 q^4-10871239 q^3+344203 q^2+11352146 q+15915633+11352146 q^{-1} +344203 q^{-2} -10871239 q^{-3} -15942378 q^{-4} -11896387 q^{-5} -1103802 q^{-6} +10346608 q^{-7} +15997522 q^{-8} +12561147 q^{-9} +2050425 q^{-10} -9641991 q^{-11} -15980950 q^{-12} -13335658 q^{-13} -3272853 q^{-14} +8612048 q^{-15} +15752305 q^{-16} +14138213 q^{-17} +4783786 q^{-18} -7142924 q^{-19} -15135897 q^{-20} -14808343 q^{-21} -6511733 q^{-22} +5181766 q^{-23} +13970837 q^{-24} +15135646 q^{-25} +8283604 q^{-26} -2782605 q^{-27} -12155512 q^{-28} -14895676 q^{-29} -9843831 q^{-30} +121154 q^{-31} +9700418 q^{-32} +13915945 q^{-33} +10900762 q^{-34} +2515244 q^{-35} -6760636 q^{-36} -12142587 q^{-37} -11201786 q^{-38} -4775784 q^{-39} +3632710 q^{-40} +9681809 q^{-41} +10610793 q^{-42} +6335550 q^{-43} -696117 q^{-44} -6807311 q^{-45} -9173314 q^{-46} -6984275 q^{-47} -1670439 q^{-48} +3902842 q^{-49} +7115131 q^{-50} +6697142 q^{-51} +3202185 q^{-52} -1364682 q^{-53} -4799031 q^{-54} -5650023 q^{-55} -3814742 q^{-56} -502842 q^{-57} +2617311 q^{-58} +4160778 q^{-59} +3625400 q^{-60} +1573715 q^{-61} -884016 q^{-62} -2597945 q^{-63} -2902350 q^{-64} -1909001 q^{-65} -240851 q^{-66} +1265562 q^{-67} +1964892 q^{-68} +1714946 q^{-69} +773753 q^{-70} -333822 q^{-71} -1089251 q^{-72} -1254288 q^{-73} -857942 q^{-74} -173905 q^{-75} +439152 q^{-76} +753321 q^{-77} +689017 q^{-78} +349552 q^{-79} -55497 q^{-80} -356501 q^{-81} -443178 q^{-82} -325147 q^{-83} -106363 q^{-84} +109054 q^{-85} +228198 q^{-86} +223614 q^{-87} +133531 q^{-88} +7781 q^{-89} -89098 q^{-90} -122513 q^{-91} -100446 q^{-92} -40973 q^{-93} +18370 q^{-94} +52468 q^{-95} +58407 q^{-96} +37057 q^{-97} +6677 q^{-98} -16520 q^{-99} -27507 q^{-100} -22433 q^{-101} -9940 q^{-102} +1633 q^{-103} +10245 q^{-104} +11157 q^{-105} +7114 q^{-106} +1813 q^{-107} -3310 q^{-108} -4454 q^{-109} -3318 q^{-110} -1739 q^{-111} +483 q^{-112} +1474 q^{-113} +1554 q^{-114} +1078 q^{-115} -142 q^{-116} -518 q^{-117} -411 q^{-118} -385 q^{-119} -72 q^{-120} +35 q^{-121} +163 q^{-122} +242 q^{-123} -8 q^{-124} -69 q^{-125} -23 q^{-126} -27 q^{-127} +8 q^{-128} -24 q^{-129} -6 q^{-130} +43 q^{-131} -2 q^{-132} -14 q^{-133} - q^{-134} +9 q^{-136} -6 q^{-137} -3 q^{-138} +4 q^{-139} - q^{-140} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 118]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[12, 19, 13, 20],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 118]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[12, 19, 13, 20],
X[14, 7, 15, 8], X[8, 3, 9, 4], X[2, 16, 3, 15], X[10, 18, 11, 17],
X[14, 7, 15, 8], X[8, 3, 9, 4], X[2, 16, 3, 15], X[10, 18, 11, 17],
X[16, 10, 17, 9], X[4, 11, 5, 12]]</nowiki></pre></td></tr>
X[16, 10, 17, 9], X[4, 11, 5, 12]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 118]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 118]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -7, 6, -10, 2, -1, 5, -6, 9, -8, 10, -4, 3, -5, 7, -9, 8,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -7, 6, -10, 2, -1, 5, -6, 9, -8, 10, -4, 3, -5, 7, -9, 8,
-2, 4, -3]</nowiki></pre></td></tr>
-2, 4, -3]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 118]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 118]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 18, 14, 16, 4, 20, 2, 10, 12]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 18, 14, 16, 4, 20, 2, 10, 12]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 118]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, -2, 1, -2, 1, -2, -2, 1, -2}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 118]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, -2, 1, -2, 1, -2, -2, 1, -2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 118]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 118]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_118_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 118]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 118]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{NegativeAmphicheiral, 1, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 118]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 5 12 19 2 3 4

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 118]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_118_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 118]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{NegativeAmphicheiral, 1, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 118]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 5 12 19 2 3 4
23 + t - -- + -- - -- - 19 t + 12 t - 5 t + t
23 + t - -- + -- - -- - 19 t + 12 t - 5 t + t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 118]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 118]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8
1 + 2 z + 3 z + z</nowiki></pre></td></tr>
1 + 2 z + 3 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 118], Knot[11, Alternating, 257]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 118], Knot[11, Alternating, 257]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 118]], KnotSignature[Knot[10, 118]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{97, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 118]], KnotSignature[Knot[10, 118]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 118]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{97, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 4 8 12 15 2 3 4 5

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 118]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 4 8 12 15 2 3 4 5
17 - q + -- - -- + -- - -- - 15 q + 12 q - 8 q + 4 q - q
17 - q + -- - -- + -- - -- - 15 q + 12 q - 8 q + 4 q - q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 118]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 118]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 118]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 2 2 2 2 4 2 4 8 10

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 118]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 2 2 2 2 4 2 4 8 10
-3 - q + --- - --- + -- - -- + -- + 4 q - 2 q + 2 q - 2 q +
-3 - q + --- - --- + -- - -- + -- + 4 q - 2 q + 2 q - 2 q +
12 10 8 4 2
12 10 8 4 2
Line 147: Line 98:
12 14
12 14
2 q - q</nowiki></pre></td></tr>
2 q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 118]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 118]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
2 2 z 2 2 4 3 z 2 4 6 z 2 6
2 2 z 2 2 4 3 z 2 4 6 z 2 6
1 + 4 z - ---- - 2 a z + 8 z - ---- - 3 a z + 5 z - -- - a z +
1 + 4 z - ---- - 2 a z + 8 z - ---- - 3 a z + 5 z - -- - a z +
Line 157: Line 107:
8
8
z</nowiki></pre></td></tr>
z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 118]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 118]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 3
z 3 z 3 2 z 2 z 2 2 4 2 z
z 3 z 3 2 z 2 z 2 2 4 2 z
1 - -- - --- - 3 a z - a z - 6 z + -- - ---- - 2 a z + a z - -- +
1 - -- - --- - 3 a z - a z - 6 z + -- - ---- - 2 a z + a z - -- +
Line 188: Line 137:
2 a
2 a
a</nowiki></pre></td></tr>
a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 118]], Vassiliev[3][Knot[10, 118]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 118]], Vassiliev[3][Knot[10, 118]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 118]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9 1 3 1 5 3 7 5

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 118]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9 1 3 1 5 3 7 5
- + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
Line 205: Line 152:
7 4 9 4 11 5
7 4 9 4 11 5
q t + 3 q t + q t</nowiki></pre></td></tr>
q t + 3 q t + q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 118], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 118], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 4 3 11 27 8 52 76 8 130 122
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 4 3 11 27 8 52 76 8 130 122
241 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - --- -
241 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - --- -
14 13 12 11 10 9 8 7 6 5
14 13 12 11 10 9 8 7 6 5
Line 222: Line 168:
14 15
14 15
4 q + q</nowiki></pre></td></tr>
4 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 10:35, 30 August 2005

10 117.gif

10_117

10 119.gif

10_119

10 118.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 118's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 118 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X18,6,19,5 X20,13,1,14 X12,19,13,20 X14,7,15,8 X8394 X2,16,3,15 X10,18,11,17 X16,10,17,9 X4,11,5,12
Gauss code 1, -7, 6, -10, 2, -1, 5, -6, 9, -8, 10, -4, 3, -5, 7, -9, 8, -2, 4, -3
Dowker-Thistlethwaite code 6 8 18 14 16 4 20 2 10 12
Conway Notation [8*2:.2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

10 118 ML.gif 10 118 AP.gif
[{6, 12}, {2, 7}, {1, 4}, {3, 5}, {4, 6}, {5, 11}, {12, 8}, {7, 10}, {11, 9}, {8, 2}, {10, 3}, {9, 1}]

[edit Notes on presentations of 10 118]


Three dimensional invariants

Symmetry type Negative amphicheiral
Unknotting number 1
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-6]
Hyperbolic Volume 15.5452
A-Polynomial See Data:10 118/A-polynomial

[edit Notes for 10 118's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
Concordance genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4}
Rasmussen s-Invariant 0

[edit Notes for 10 118's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+2 z^4+1}
2nd Alexander ideal (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
Determinant and Signature { 97, 0 }
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-8 q^3+12 q^2-15 q+17-15 q^{-1} +12 q^{-2} -8 q^{-3} +4 q^{-4} - q^{-5} }
HOMFLY-PT polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8-a^2 z^6-z^6 a^{-2} +5 z^6-3 a^2 z^4-3 z^4 a^{-2} +8 z^4-2 a^2 z^2-2 z^2 a^{-2} +4 z^2+1}
Kauffman polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 a z^9+3 z^9 a^{-1} +7 a^2 z^8+7 z^8 a^{-2} +14 z^8+7 a^3 z^7+6 a z^7+6 z^7 a^{-1} +7 z^7 a^{-3} +4 a^4 z^6-11 a^2 z^6-11 z^6 a^{-2} +4 z^6 a^{-4} -30 z^6+a^5 z^5-12 a^3 z^5-20 a z^5-20 z^5 a^{-1} -12 z^5 a^{-3} +z^5 a^{-5} -6 a^4 z^4+6 a^2 z^4+6 z^4 a^{-2} -6 z^4 a^{-4} +24 z^4-a^5 z^3+5 a^3 z^3+15 a z^3+15 z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} +a^4 z^2-2 a^2 z^2-2 z^2 a^{-2} +z^2 a^{-4} -6 z^2-a^3 z-3 a z-3 z a^{-1} -z a^{-3} +1}
The A2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{14}+2 q^{12}-2 q^{10}+2 q^8-2 q^4+4 q^2-3+4 q^{-2} -2 q^{-4} +2 q^{-8} -2 q^{-10} +2 q^{-12} - q^{-14} }
The G2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-3 q^{78}+7 q^{76}-13 q^{74}+15 q^{72}-13 q^{70}+2 q^{68}+22 q^{66}-48 q^{64}+77 q^{62}-93 q^{60}+75 q^{58}-27 q^{56}-60 q^{54}+162 q^{52}-237 q^{50}+259 q^{48}-188 q^{46}+27 q^{44}+173 q^{42}-342 q^{40}+401 q^{38}-319 q^{36}+115 q^{34}+129 q^{32}-313 q^{30}+362 q^{28}-237 q^{26}+12 q^{24}+212 q^{22}-326 q^{20}+260 q^{18}-55 q^{16}-209 q^{14}+412 q^{12}-458 q^{10}+343 q^8-79 q^6-234 q^4+477 q^2-571+477 q^{-2} -234 q^{-4} -79 q^{-6} +343 q^{-8} -458 q^{-10} +412 q^{-12} -209 q^{-14} -55 q^{-16} +260 q^{-18} -326 q^{-20} +212 q^{-22} +12 q^{-24} -237 q^{-26} +362 q^{-28} -313 q^{-30} +129 q^{-32} +115 q^{-34} -319 q^{-36} +401 q^{-38} -342 q^{-40} +173 q^{-42} +27 q^{-44} -188 q^{-46} +259 q^{-48} -237 q^{-50} +162 q^{-52} -60 q^{-54} -27 q^{-56} +75 q^{-58} -93 q^{-60} +77 q^{-62} -48 q^{-64} +22 q^{-66} +2 q^{-68} -13 q^{-70} +15 q^{-72} -13 q^{-74} +7 q^{-76} -3 q^{-78} + q^{-80} }

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a257,}

Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}

Vassiliev invariants

V2 and V3: (0, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -16} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -16} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -8} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{224}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{448}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{248}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 24}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 118. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012345χ
11          1-1
9         3 3
7        51 -4
5       73  4
3      85   -3
1     97    2
-1    79     2
-3   58      -3
-5  37       4
-7 15        -4
-9 3         3
-111          -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{9}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

The Coloured Jones Polynomials