9 17: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- -->
k = 17 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,9,-8,3,-4,2,-6,5,-7,8,-9,7/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=17|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,9,-8,3,-4,2,-6,5,-7,8,-9,7/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 9 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 9, width is 4.
braid_index = 4 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
Line 72: Line 36:
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{10}-2 q^9-q^8+7 q^7-5 q^6-8 q^5+17 q^4-5 q^3-20 q^2+26 q+1-32 q^{-1} +30 q^{-2} +8 q^{-3} -39 q^{-4} +28 q^{-5} +13 q^{-6} -37 q^{-7} +20 q^{-8} +12 q^{-9} -25 q^{-10} +12 q^{-11} +6 q^{-12} -11 q^{-13} +6 q^{-14} + q^{-15} -3 q^{-16} + q^{-17} </math> |

coloured_jones_3 = <math>q^{21}-2 q^{20}-q^{19}+2 q^{18}+6 q^{17}-4 q^{16}-11 q^{15}+q^{14}+20 q^{13}+3 q^{12}-25 q^{11}-16 q^{10}+34 q^9+25 q^8-31 q^7-43 q^6+30 q^5+55 q^4-19 q^3-70 q^2+11 q+76+5 q^{-1} -83 q^{-2} -19 q^{-3} +86 q^{-4} +32 q^{-5} -84 q^{-6} -47 q^{-7} +83 q^{-8} +55 q^{-9} -73 q^{-10} -65 q^{-11} +66 q^{-12} +66 q^{-13} -55 q^{-14} -59 q^{-15} +40 q^{-16} +52 q^{-17} -33 q^{-18} -35 q^{-19} +20 q^{-20} +26 q^{-21} -19 q^{-22} -10 q^{-23} +10 q^{-24} +7 q^{-25} -10 q^{-26} +6 q^{-28} - q^{-29} -3 q^{-30} - q^{-31} +3 q^{-32} - q^{-33} </math> |
{{Display Coloured Jones|J2=<math>q^{10}-2 q^9-q^8+7 q^7-5 q^6-8 q^5+17 q^4-5 q^3-20 q^2+26 q+1-32 q^{-1} +30 q^{-2} +8 q^{-3} -39 q^{-4} +28 q^{-5} +13 q^{-6} -37 q^{-7} +20 q^{-8} +12 q^{-9} -25 q^{-10} +12 q^{-11} +6 q^{-12} -11 q^{-13} +6 q^{-14} + q^{-15} -3 q^{-16} + q^{-17} </math>|J3=<math>q^{21}-2 q^{20}-q^{19}+2 q^{18}+6 q^{17}-4 q^{16}-11 q^{15}+q^{14}+20 q^{13}+3 q^{12}-25 q^{11}-16 q^{10}+34 q^9+25 q^8-31 q^7-43 q^6+30 q^5+55 q^4-19 q^3-70 q^2+11 q+76+5 q^{-1} -83 q^{-2} -19 q^{-3} +86 q^{-4} +32 q^{-5} -84 q^{-6} -47 q^{-7} +83 q^{-8} +55 q^{-9} -73 q^{-10} -65 q^{-11} +66 q^{-12} +66 q^{-13} -55 q^{-14} -59 q^{-15} +40 q^{-16} +52 q^{-17} -33 q^{-18} -35 q^{-19} +20 q^{-20} +26 q^{-21} -19 q^{-22} -10 q^{-23} +10 q^{-24} +7 q^{-25} -10 q^{-26} +6 q^{-28} - q^{-29} -3 q^{-30} - q^{-31} +3 q^{-32} - q^{-33} </math>|J4=<math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+q^{32}+7 q^{31}-8 q^{30}-9 q^{29}+2 q^{27}+32 q^{26}-7 q^{25}-23 q^{24}-20 q^{23}-19 q^{22}+70 q^{21}+19 q^{20}-12 q^{19}-46 q^{18}-83 q^{17}+84 q^{16}+50 q^{15}+45 q^{14}-32 q^{13}-163 q^{12}+48 q^{11}+38 q^{10}+122 q^9+40 q^8-208 q^7-10 q^6-35 q^5+168 q^4+143 q^3-190 q^2-52 q-147+168 q^{-1} +239 q^{-2} -131 q^{-3} -65 q^{-4} -262 q^{-5} +134 q^{-6} +312 q^{-7} -53 q^{-8} -60 q^{-9} -362 q^{-10} +83 q^{-11} +362 q^{-12} +30 q^{-13} -43 q^{-14} -431 q^{-15} +18 q^{-16} +370 q^{-17} +105 q^{-18} -5 q^{-19} -437 q^{-20} -47 q^{-21} +309 q^{-22} +136 q^{-23} +53 q^{-24} -358 q^{-25} -84 q^{-26} +198 q^{-27} +105 q^{-28} +89 q^{-29} -228 q^{-30} -68 q^{-31} +96 q^{-32} +37 q^{-33} +83 q^{-34} -109 q^{-35} -31 q^{-36} +37 q^{-37} -10 q^{-38} +53 q^{-39} -40 q^{-40} -4 q^{-41} +13 q^{-42} -21 q^{-43} +24 q^{-44} -11 q^{-45} +4 q^{-46} +4 q^{-47} -12 q^{-48} +6 q^{-49} -2 q^{-50} +3 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} </math>|J5=<math>q^{55}-2 q^{54}-q^{53}+2 q^{52}+q^{51}+2 q^{50}+3 q^{49}-6 q^{48}-11 q^{47}+6 q^{45}+13 q^{44}+19 q^{43}-3 q^{42}-30 q^{41}-31 q^{40}-9 q^{39}+23 q^{38}+59 q^{37}+43 q^{36}-19 q^{35}-70 q^{34}-80 q^{33}-25 q^{32}+72 q^{31}+119 q^{30}+74 q^{29}-28 q^{28}-136 q^{27}-151 q^{26}-25 q^{25}+112 q^{24}+185 q^{23}+137 q^{22}-47 q^{21}-216 q^{20}-213 q^{19}-58 q^{18}+153 q^{17}+300 q^{16}+200 q^{15}-82 q^{14}-307 q^{13}-329 q^{12}-82 q^{11}+287 q^{10}+449 q^9+239 q^8-188 q^7-519 q^6-437 q^5+65 q^4+554 q^3+594 q^2+112 q-540-758 q^{-1} -284 q^{-2} +501 q^{-3} +874 q^{-4} +467 q^{-5} -428 q^{-6} -987 q^{-7} -641 q^{-8} +359 q^{-9} +1077 q^{-10} +796 q^{-11} -279 q^{-12} -1144 q^{-13} -960 q^{-14} +199 q^{-15} +1228 q^{-16} +1089 q^{-17} -120 q^{-18} -1262 q^{-19} -1235 q^{-20} +19 q^{-21} +1304 q^{-22} +1344 q^{-23} +81 q^{-24} -1274 q^{-25} -1431 q^{-26} -217 q^{-27} +1212 q^{-28} +1472 q^{-29} +341 q^{-30} -1086 q^{-31} -1439 q^{-32} -457 q^{-33} +898 q^{-34} +1357 q^{-35} +538 q^{-36} -712 q^{-37} -1185 q^{-38} -558 q^{-39} +488 q^{-40} +994 q^{-41} +540 q^{-42} -335 q^{-43} -752 q^{-44} -467 q^{-45} +172 q^{-46} +568 q^{-47} +372 q^{-48} -104 q^{-49} -365 q^{-50} -271 q^{-51} +18 q^{-52} +253 q^{-53} +190 q^{-54} -19 q^{-55} -134 q^{-56} -114 q^{-57} -17 q^{-58} +81 q^{-59} +75 q^{-60} +6 q^{-61} -38 q^{-62} -36 q^{-63} -10 q^{-64} +13 q^{-65} +19 q^{-66} +12 q^{-67} -7 q^{-68} -11 q^{-69} + q^{-70} -6 q^{-71} +2 q^{-72} +8 q^{-73} -3 q^{-75} +2 q^{-76} -3 q^{-77} - q^{-78} +3 q^{-79} - q^{-80} </math>|J6=<math>q^{78}-2 q^{77}-q^{76}+2 q^{75}+q^{74}+2 q^{73}-2 q^{72}+5 q^{71}-8 q^{70}-11 q^{69}+3 q^{68}+5 q^{67}+14 q^{66}+3 q^{65}+24 q^{64}-17 q^{63}-39 q^{62}-22 q^{61}-11 q^{60}+25 q^{59}+19 q^{58}+100 q^{57}+17 q^{56}-49 q^{55}-73 q^{54}-90 q^{53}-39 q^{52}-31 q^{51}+197 q^{50}+133 q^{49}+68 q^{48}-29 q^{47}-136 q^{46}-190 q^{45}-267 q^{44}+131 q^{43}+158 q^{42}+264 q^{41}+216 q^{40}+93 q^{39}-162 q^{38}-544 q^{37}-172 q^{36}-175 q^{35}+177 q^{34}+397 q^{33}+591 q^{32}+315 q^{31}-406 q^{30}-331 q^{29}-750 q^{28}-436 q^{27}+5 q^{26}+852 q^{25}+1007 q^{24}+335 q^{23}+181 q^{22}-959 q^{21}-1230 q^{20}-1058 q^{19}+349 q^{18}+1248 q^{17}+1241 q^{16}+1369 q^{15}-319 q^{14}-1523 q^{13}-2269 q^{12}-848 q^{11}+615 q^{10}+1642 q^9+2680 q^8+1030 q^7-965 q^6-2990 q^5-2193 q^4-702 q^3+1264 q^2+3551 q+2555+213 q^{-1} -3010 q^{-2} -3198 q^{-3} -2203 q^{-4} +349 q^{-5} +3838 q^{-6} +3830 q^{-7} +1550 q^{-8} -2571 q^{-9} -3766 q^{-10} -3511 q^{-11} -685 q^{-12} +3770 q^{-13} +4771 q^{-14} +2724 q^{-15} -2030 q^{-16} -4101 q^{-17} -4553 q^{-18} -1573 q^{-19} +3631 q^{-20} +5526 q^{-21} +3697 q^{-22} -1559 q^{-23} -4399 q^{-24} -5450 q^{-25} -2336 q^{-26} +3485 q^{-27} +6189 q^{-28} +4596 q^{-29} -1024 q^{-30} -4589 q^{-31} -6235 q^{-32} -3156 q^{-33} +3069 q^{-34} +6557 q^{-35} +5428 q^{-36} -169 q^{-37} -4292 q^{-38} -6629 q^{-39} -4019 q^{-40} +2108 q^{-41} +6172 q^{-42} +5837 q^{-43} +941 q^{-44} -3233 q^{-45} -6149 q^{-46} -4501 q^{-47} +771 q^{-48} +4842 q^{-49} +5341 q^{-50} +1762 q^{-51} -1720 q^{-52} -4702 q^{-53} -4120 q^{-54} -303 q^{-55} +3028 q^{-56} +3959 q^{-57} +1809 q^{-58} -469 q^{-59} -2869 q^{-60} -2983 q^{-61} -661 q^{-62} +1502 q^{-63} +2333 q^{-64} +1232 q^{-65} +114 q^{-66} -1398 q^{-67} -1719 q^{-68} -483 q^{-69} +630 q^{-70} +1112 q^{-71} +573 q^{-72} +203 q^{-73} -565 q^{-74} -825 q^{-75} -202 q^{-76} +246 q^{-77} +452 q^{-78} +175 q^{-79} +132 q^{-80} -194 q^{-81} -356 q^{-82} -42 q^{-83} +91 q^{-84} +162 q^{-85} +25 q^{-86} +70 q^{-87} -55 q^{-88} -141 q^{-89} +4 q^{-90} +24 q^{-91} +52 q^{-92} -9 q^{-93} +37 q^{-94} -11 q^{-95} -49 q^{-96} +7 q^{-97} +15 q^{-99} -8 q^{-100} +16 q^{-101} -14 q^{-103} +4 q^{-104} -3 q^{-105} +3 q^{-106} -2 q^{-107} +3 q^{-108} + q^{-109} -3 q^{-110} + q^{-111} </math>|J7=<math>q^{105}-2 q^{104}-q^{103}+2 q^{102}+q^{101}+2 q^{100}-2 q^{99}+3 q^{97}-8 q^{96}-8 q^{95}+2 q^{94}+5 q^{93}+16 q^{92}+5 q^{91}+q^{90}+13 q^{89}-23 q^{88}-34 q^{87}-25 q^{86}-13 q^{85}+38 q^{84}+38 q^{83}+37 q^{82}+70 q^{81}-2 q^{80}-59 q^{79}-93 q^{78}-132 q^{77}-23 q^{76}+24 q^{75}+75 q^{74}+209 q^{73}+150 q^{72}+74 q^{71}-50 q^{70}-267 q^{69}-229 q^{68}-208 q^{67}-133 q^{66}+198 q^{65}+294 q^{64}+399 q^{63}+367 q^{62}-25 q^{61}-184 q^{60}-453 q^{59}-643 q^{58}-324 q^{57}-123 q^{56}+322 q^{55}+799 q^{54}+676 q^{53}+635 q^{52}+114 q^{51}-670 q^{50}-874 q^{49}-1205 q^{48}-849 q^{47}+115 q^{46}+738 q^{45}+1635 q^{44}+1699 q^{43}+788 q^{42}-41 q^{41}-1577 q^{40}-2446 q^{39}-2017 q^{38}-1187 q^{37}+992 q^{36}+2731 q^{35}+3090 q^{34}+2807 q^{33}+427 q^{32}-2300 q^{31}-3897 q^{30}-4558 q^{29}-2308 q^{28}+1094 q^{27}+3862 q^{26}+5999 q^{25}+4607 q^{24}+949 q^{23}-3046 q^{22}-6888 q^{21}-6771 q^{20}-3467 q^{19}+1263 q^{18}+6854 q^{17}+8590 q^{16}+6257 q^{15}+1220 q^{14}-5947 q^{13}-9686 q^{12}-8868 q^{11}-4215 q^{10}+4155 q^9+9981 q^8+11106 q^7+7335 q^6-1728 q^5-9431 q^4-12709 q^3-10385 q^2-1134 q+8236+13694 q^{-1} +13062 q^{-2} +4086 q^{-3} -6474 q^{-4} -14025 q^{-5} -15370 q^{-6} -7019 q^{-7} +4495 q^{-8} +13940 q^{-9} +17159 q^{-10} +9672 q^{-11} -2401 q^{-12} -13477 q^{-13} -18579 q^{-14} -12072 q^{-15} +411 q^{-16} +12923 q^{-17} +19706 q^{-18} +14102 q^{-19} +1349 q^{-20} -12339 q^{-21} -20591 q^{-22} -15887 q^{-23} -2930 q^{-24} +11890 q^{-25} +21484 q^{-26} +17463 q^{-27} +4192 q^{-28} -11593 q^{-29} -22293 q^{-30} -18922 q^{-31} -5408 q^{-32} +11376 q^{-33} +23229 q^{-34} +20426 q^{-35} +6522 q^{-36} -11219 q^{-37} -24079 q^{-38} -21880 q^{-39} -7831 q^{-40} +10781 q^{-41} +24815 q^{-42} +23452 q^{-43} +9340 q^{-44} -10065 q^{-45} -25156 q^{-46} -24782 q^{-47} -11094 q^{-48} +8682 q^{-49} +24854 q^{-50} +25852 q^{-51} +13009 q^{-52} -6760 q^{-53} -23769 q^{-54} -26211 q^{-55} -14777 q^{-56} +4299 q^{-57} +21694 q^{-58} +25700 q^{-59} +16178 q^{-60} -1574 q^{-61} -18846 q^{-62} -24203 q^{-63} -16777 q^{-64} -1005 q^{-65} +15380 q^{-66} +21658 q^{-67} +16509 q^{-68} +3183 q^{-69} -11778 q^{-70} -18449 q^{-71} -15254 q^{-72} -4551 q^{-73} +8329 q^{-74} +14823 q^{-75} +13296 q^{-76} +5144 q^{-77} -5491 q^{-78} -11273 q^{-79} -10798 q^{-80} -4997 q^{-81} +3279 q^{-82} +8091 q^{-83} +8324 q^{-84} +4310 q^{-85} -1887 q^{-86} -5491 q^{-87} -5933 q^{-88} -3371 q^{-89} +951 q^{-90} +3542 q^{-91} +4074 q^{-92} +2435 q^{-93} -581 q^{-94} -2220 q^{-95} -2544 q^{-96} -1575 q^{-97} +327 q^{-98} +1291 q^{-99} +1583 q^{-100} +1000 q^{-101} -301 q^{-102} -792 q^{-103} -889 q^{-104} -524 q^{-105} +235 q^{-106} +425 q^{-107} +497 q^{-108} +306 q^{-109} -207 q^{-110} -261 q^{-111} -272 q^{-112} -143 q^{-113} +180 q^{-114} +139 q^{-115} +130 q^{-116} +69 q^{-117} -116 q^{-118} -66 q^{-119} -85 q^{-120} -51 q^{-121} +99 q^{-122} +49 q^{-123} +28 q^{-124} +13 q^{-125} -46 q^{-126} -8 q^{-127} -26 q^{-128} -27 q^{-129} +41 q^{-130} +13 q^{-131} +5 q^{-132} +5 q^{-133} -14 q^{-134} +4 q^{-135} -9 q^{-136} -10 q^{-137} +12 q^{-138} +2 q^{-139} - q^{-140} +3 q^{-141} -3 q^{-142} +2 q^{-143} -3 q^{-144} - q^{-145} +3 q^{-146} - q^{-147} </math>}}
coloured_jones_4 = <math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+q^{32}+7 q^{31}-8 q^{30}-9 q^{29}+2 q^{27}+32 q^{26}-7 q^{25}-23 q^{24}-20 q^{23}-19 q^{22}+70 q^{21}+19 q^{20}-12 q^{19}-46 q^{18}-83 q^{17}+84 q^{16}+50 q^{15}+45 q^{14}-32 q^{13}-163 q^{12}+48 q^{11}+38 q^{10}+122 q^9+40 q^8-208 q^7-10 q^6-35 q^5+168 q^4+143 q^3-190 q^2-52 q-147+168 q^{-1} +239 q^{-2} -131 q^{-3} -65 q^{-4} -262 q^{-5} +134 q^{-6} +312 q^{-7} -53 q^{-8} -60 q^{-9} -362 q^{-10} +83 q^{-11} +362 q^{-12} +30 q^{-13} -43 q^{-14} -431 q^{-15} +18 q^{-16} +370 q^{-17} +105 q^{-18} -5 q^{-19} -437 q^{-20} -47 q^{-21} +309 q^{-22} +136 q^{-23} +53 q^{-24} -358 q^{-25} -84 q^{-26} +198 q^{-27} +105 q^{-28} +89 q^{-29} -228 q^{-30} -68 q^{-31} +96 q^{-32} +37 q^{-33} +83 q^{-34} -109 q^{-35} -31 q^{-36} +37 q^{-37} -10 q^{-38} +53 q^{-39} -40 q^{-40} -4 q^{-41} +13 q^{-42} -21 q^{-43} +24 q^{-44} -11 q^{-45} +4 q^{-46} +4 q^{-47} -12 q^{-48} +6 q^{-49} -2 q^{-50} +3 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} </math> |

coloured_jones_5 = <math>q^{55}-2 q^{54}-q^{53}+2 q^{52}+q^{51}+2 q^{50}+3 q^{49}-6 q^{48}-11 q^{47}+6 q^{45}+13 q^{44}+19 q^{43}-3 q^{42}-30 q^{41}-31 q^{40}-9 q^{39}+23 q^{38}+59 q^{37}+43 q^{36}-19 q^{35}-70 q^{34}-80 q^{33}-25 q^{32}+72 q^{31}+119 q^{30}+74 q^{29}-28 q^{28}-136 q^{27}-151 q^{26}-25 q^{25}+112 q^{24}+185 q^{23}+137 q^{22}-47 q^{21}-216 q^{20}-213 q^{19}-58 q^{18}+153 q^{17}+300 q^{16}+200 q^{15}-82 q^{14}-307 q^{13}-329 q^{12}-82 q^{11}+287 q^{10}+449 q^9+239 q^8-188 q^7-519 q^6-437 q^5+65 q^4+554 q^3+594 q^2+112 q-540-758 q^{-1} -284 q^{-2} +501 q^{-3} +874 q^{-4} +467 q^{-5} -428 q^{-6} -987 q^{-7} -641 q^{-8} +359 q^{-9} +1077 q^{-10} +796 q^{-11} -279 q^{-12} -1144 q^{-13} -960 q^{-14} +199 q^{-15} +1228 q^{-16} +1089 q^{-17} -120 q^{-18} -1262 q^{-19} -1235 q^{-20} +19 q^{-21} +1304 q^{-22} +1344 q^{-23} +81 q^{-24} -1274 q^{-25} -1431 q^{-26} -217 q^{-27} +1212 q^{-28} +1472 q^{-29} +341 q^{-30} -1086 q^{-31} -1439 q^{-32} -457 q^{-33} +898 q^{-34} +1357 q^{-35} +538 q^{-36} -712 q^{-37} -1185 q^{-38} -558 q^{-39} +488 q^{-40} +994 q^{-41} +540 q^{-42} -335 q^{-43} -752 q^{-44} -467 q^{-45} +172 q^{-46} +568 q^{-47} +372 q^{-48} -104 q^{-49} -365 q^{-50} -271 q^{-51} +18 q^{-52} +253 q^{-53} +190 q^{-54} -19 q^{-55} -134 q^{-56} -114 q^{-57} -17 q^{-58} +81 q^{-59} +75 q^{-60} +6 q^{-61} -38 q^{-62} -36 q^{-63} -10 q^{-64} +13 q^{-65} +19 q^{-66} +12 q^{-67} -7 q^{-68} -11 q^{-69} + q^{-70} -6 q^{-71} +2 q^{-72} +8 q^{-73} -3 q^{-75} +2 q^{-76} -3 q^{-77} - q^{-78} +3 q^{-79} - q^{-80} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{78}-2 q^{77}-q^{76}+2 q^{75}+q^{74}+2 q^{73}-2 q^{72}+5 q^{71}-8 q^{70}-11 q^{69}+3 q^{68}+5 q^{67}+14 q^{66}+3 q^{65}+24 q^{64}-17 q^{63}-39 q^{62}-22 q^{61}-11 q^{60}+25 q^{59}+19 q^{58}+100 q^{57}+17 q^{56}-49 q^{55}-73 q^{54}-90 q^{53}-39 q^{52}-31 q^{51}+197 q^{50}+133 q^{49}+68 q^{48}-29 q^{47}-136 q^{46}-190 q^{45}-267 q^{44}+131 q^{43}+158 q^{42}+264 q^{41}+216 q^{40}+93 q^{39}-162 q^{38}-544 q^{37}-172 q^{36}-175 q^{35}+177 q^{34}+397 q^{33}+591 q^{32}+315 q^{31}-406 q^{30}-331 q^{29}-750 q^{28}-436 q^{27}+5 q^{26}+852 q^{25}+1007 q^{24}+335 q^{23}+181 q^{22}-959 q^{21}-1230 q^{20}-1058 q^{19}+349 q^{18}+1248 q^{17}+1241 q^{16}+1369 q^{15}-319 q^{14}-1523 q^{13}-2269 q^{12}-848 q^{11}+615 q^{10}+1642 q^9+2680 q^8+1030 q^7-965 q^6-2990 q^5-2193 q^4-702 q^3+1264 q^2+3551 q+2555+213 q^{-1} -3010 q^{-2} -3198 q^{-3} -2203 q^{-4} +349 q^{-5} +3838 q^{-6} +3830 q^{-7} +1550 q^{-8} -2571 q^{-9} -3766 q^{-10} -3511 q^{-11} -685 q^{-12} +3770 q^{-13} +4771 q^{-14} +2724 q^{-15} -2030 q^{-16} -4101 q^{-17} -4553 q^{-18} -1573 q^{-19} +3631 q^{-20} +5526 q^{-21} +3697 q^{-22} -1559 q^{-23} -4399 q^{-24} -5450 q^{-25} -2336 q^{-26} +3485 q^{-27} +6189 q^{-28} +4596 q^{-29} -1024 q^{-30} -4589 q^{-31} -6235 q^{-32} -3156 q^{-33} +3069 q^{-34} +6557 q^{-35} +5428 q^{-36} -169 q^{-37} -4292 q^{-38} -6629 q^{-39} -4019 q^{-40} +2108 q^{-41} +6172 q^{-42} +5837 q^{-43} +941 q^{-44} -3233 q^{-45} -6149 q^{-46} -4501 q^{-47} +771 q^{-48} +4842 q^{-49} +5341 q^{-50} +1762 q^{-51} -1720 q^{-52} -4702 q^{-53} -4120 q^{-54} -303 q^{-55} +3028 q^{-56} +3959 q^{-57} +1809 q^{-58} -469 q^{-59} -2869 q^{-60} -2983 q^{-61} -661 q^{-62} +1502 q^{-63} +2333 q^{-64} +1232 q^{-65} +114 q^{-66} -1398 q^{-67} -1719 q^{-68} -483 q^{-69} +630 q^{-70} +1112 q^{-71} +573 q^{-72} +203 q^{-73} -565 q^{-74} -825 q^{-75} -202 q^{-76} +246 q^{-77} +452 q^{-78} +175 q^{-79} +132 q^{-80} -194 q^{-81} -356 q^{-82} -42 q^{-83} +91 q^{-84} +162 q^{-85} +25 q^{-86} +70 q^{-87} -55 q^{-88} -141 q^{-89} +4 q^{-90} +24 q^{-91} +52 q^{-92} -9 q^{-93} +37 q^{-94} -11 q^{-95} -49 q^{-96} +7 q^{-97} +15 q^{-99} -8 q^{-100} +16 q^{-101} -14 q^{-103} +4 q^{-104} -3 q^{-105} +3 q^{-106} -2 q^{-107} +3 q^{-108} + q^{-109} -3 q^{-110} + q^{-111} </math> |

coloured_jones_7 = <math>q^{105}-2 q^{104}-q^{103}+2 q^{102}+q^{101}+2 q^{100}-2 q^{99}+3 q^{97}-8 q^{96}-8 q^{95}+2 q^{94}+5 q^{93}+16 q^{92}+5 q^{91}+q^{90}+13 q^{89}-23 q^{88}-34 q^{87}-25 q^{86}-13 q^{85}+38 q^{84}+38 q^{83}+37 q^{82}+70 q^{81}-2 q^{80}-59 q^{79}-93 q^{78}-132 q^{77}-23 q^{76}+24 q^{75}+75 q^{74}+209 q^{73}+150 q^{72}+74 q^{71}-50 q^{70}-267 q^{69}-229 q^{68}-208 q^{67}-133 q^{66}+198 q^{65}+294 q^{64}+399 q^{63}+367 q^{62}-25 q^{61}-184 q^{60}-453 q^{59}-643 q^{58}-324 q^{57}-123 q^{56}+322 q^{55}+799 q^{54}+676 q^{53}+635 q^{52}+114 q^{51}-670 q^{50}-874 q^{49}-1205 q^{48}-849 q^{47}+115 q^{46}+738 q^{45}+1635 q^{44}+1699 q^{43}+788 q^{42}-41 q^{41}-1577 q^{40}-2446 q^{39}-2017 q^{38}-1187 q^{37}+992 q^{36}+2731 q^{35}+3090 q^{34}+2807 q^{33}+427 q^{32}-2300 q^{31}-3897 q^{30}-4558 q^{29}-2308 q^{28}+1094 q^{27}+3862 q^{26}+5999 q^{25}+4607 q^{24}+949 q^{23}-3046 q^{22}-6888 q^{21}-6771 q^{20}-3467 q^{19}+1263 q^{18}+6854 q^{17}+8590 q^{16}+6257 q^{15}+1220 q^{14}-5947 q^{13}-9686 q^{12}-8868 q^{11}-4215 q^{10}+4155 q^9+9981 q^8+11106 q^7+7335 q^6-1728 q^5-9431 q^4-12709 q^3-10385 q^2-1134 q+8236+13694 q^{-1} +13062 q^{-2} +4086 q^{-3} -6474 q^{-4} -14025 q^{-5} -15370 q^{-6} -7019 q^{-7} +4495 q^{-8} +13940 q^{-9} +17159 q^{-10} +9672 q^{-11} -2401 q^{-12} -13477 q^{-13} -18579 q^{-14} -12072 q^{-15} +411 q^{-16} +12923 q^{-17} +19706 q^{-18} +14102 q^{-19} +1349 q^{-20} -12339 q^{-21} -20591 q^{-22} -15887 q^{-23} -2930 q^{-24} +11890 q^{-25} +21484 q^{-26} +17463 q^{-27} +4192 q^{-28} -11593 q^{-29} -22293 q^{-30} -18922 q^{-31} -5408 q^{-32} +11376 q^{-33} +23229 q^{-34} +20426 q^{-35} +6522 q^{-36} -11219 q^{-37} -24079 q^{-38} -21880 q^{-39} -7831 q^{-40} +10781 q^{-41} +24815 q^{-42} +23452 q^{-43} +9340 q^{-44} -10065 q^{-45} -25156 q^{-46} -24782 q^{-47} -11094 q^{-48} +8682 q^{-49} +24854 q^{-50} +25852 q^{-51} +13009 q^{-52} -6760 q^{-53} -23769 q^{-54} -26211 q^{-55} -14777 q^{-56} +4299 q^{-57} +21694 q^{-58} +25700 q^{-59} +16178 q^{-60} -1574 q^{-61} -18846 q^{-62} -24203 q^{-63} -16777 q^{-64} -1005 q^{-65} +15380 q^{-66} +21658 q^{-67} +16509 q^{-68} +3183 q^{-69} -11778 q^{-70} -18449 q^{-71} -15254 q^{-72} -4551 q^{-73} +8329 q^{-74} +14823 q^{-75} +13296 q^{-76} +5144 q^{-77} -5491 q^{-78} -11273 q^{-79} -10798 q^{-80} -4997 q^{-81} +3279 q^{-82} +8091 q^{-83} +8324 q^{-84} +4310 q^{-85} -1887 q^{-86} -5491 q^{-87} -5933 q^{-88} -3371 q^{-89} +951 q^{-90} +3542 q^{-91} +4074 q^{-92} +2435 q^{-93} -581 q^{-94} -2220 q^{-95} -2544 q^{-96} -1575 q^{-97} +327 q^{-98} +1291 q^{-99} +1583 q^{-100} +1000 q^{-101} -301 q^{-102} -792 q^{-103} -889 q^{-104} -524 q^{-105} +235 q^{-106} +425 q^{-107} +497 q^{-108} +306 q^{-109} -207 q^{-110} -261 q^{-111} -272 q^{-112} -143 q^{-113} +180 q^{-114} +139 q^{-115} +130 q^{-116} +69 q^{-117} -116 q^{-118} -66 q^{-119} -85 q^{-120} -51 q^{-121} +99 q^{-122} +49 q^{-123} +28 q^{-124} +13 q^{-125} -46 q^{-126} -8 q^{-127} -26 q^{-128} -27 q^{-129} +41 q^{-130} +13 q^{-131} +5 q^{-132} +5 q^{-133} -14 q^{-134} +4 q^{-135} -9 q^{-136} -10 q^{-137} +12 q^{-138} +2 q^{-139} - q^{-140} +3 q^{-141} -3 q^{-142} +2 q^{-143} -3 q^{-144} - q^{-145} +3 q^{-146} - q^{-147} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[7, 14, 8, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16],
X[7, 14, 8, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16],
X[17, 9, 18, 8]]</nowiki></pre></td></tr>
X[17, 9, 18, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 17]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -5, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -5, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 14, 16, 2, 6, 18, 8]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 14, 16, 2, 6, 18, 8]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, 1, -2, -2, -2, 3, -2, 3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, 1, -2, -2, -2, 3, -2, 3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 17]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_17_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 17]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, {4, 7}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 17]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 9 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 17]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_17_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 17]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, {4, 7}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 17]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 9 2 3
-9 + t - -- + - + 9 t - 5 t + t
-9 + t - -- + - + 9 t - 5 t + t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 17]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 17]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 - 2 z + z + z</nowiki></pre></td></tr>
1 - 2 z + z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 17]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 17]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 17]], KnotSignature[Knot[9, 17]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, -2}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 17]], KnotSignature[Knot[9, 17]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 4 6 7 6 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 4 6 7 6 2 3
-5 - q + -- - -- + -- - -- + - + 4 q - 2 q + q
-5 - q + -- - -- + -- - -- + - + 4 q - 2 q + q
5 4 3 2 q
5 4 3 2 q
q q q q</nowiki></pre></td></tr>
q q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 17]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 17]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 -12 2 -8 -6 2 2 4 8 10

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 -12 2 -8 -6 2 2 4 8 10
-q + q + q + --- - q + q - -- - q + q + q + q
-q + q + q + --- - q + q - -- - q + q + q + q
10 4
10 4
q q</nowiki></pre></td></tr>
q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 17]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
2 2 2 z 2 2 4 2 4 2 4
2 2 2 z 2 2 4 2 4 2 4
-3 + -- + 2 a - 6 z + -- + 5 a z - 2 a z - 2 z + 4 a z -
-3 + -- + 2 a - 6 z + -- + 5 a z - 2 a z - 2 z + 4 a z -
Line 152: Line 102:
4 4 2 6
4 4 2 6
a z + a z</nowiki></pre></td></tr>
a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 17]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
2 2 z 3 5 2 5 z 2 2
2 2 z 3 5 2 5 z 2 2
-3 - -- - 2 a - - + a z + 3 a z + a z + 13 z + ---- + 9 a z -
-3 - -- - 2 a - - + a z + 3 a z + a z + 13 z + ---- + 9 a z -
Line 179: Line 128:
8 2 8
8 2 8
z + a z</nowiki></pre></td></tr>
z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 17]], Vassiliev[3][Knot[9, 17]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 17]], Vassiliev[3][Knot[9, 17]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 17]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 4 1 2 1 2 2 4 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 17]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 4 1 2 1 2 2 4 2
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2
Line 193: Line 140:
5 3 q
5 3 q
q t q t</nowiki></pre></td></tr>
q t q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 17], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 17], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 3 -15 6 11 6 12 25 12 20 37
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 3 -15 6 11 6 12 25 12 20 37
1 + q - --- + q + --- - --- + --- + --- - --- + -- + -- - -- +
1 + q - --- + q + --- - --- + --- + --- - --- + -- + -- - -- +
16 14 13 12 11 10 9 8 7
16 14 13 12 11 10 9 8 7
Line 207: Line 153:
6 7 8 9 10
6 7 8 9 10
5 q + 7 q - q - 2 q + q</nowiki></pre></td></tr>
5 q + 7 q - q - 2 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:37, 30 August 2005

9 16.gif

9_16

9 18.gif

9_18

9 17.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 17's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 17 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X13,6,14,7 X15,18,16,1 X9,17,10,16 X17,9,18,8
Gauss code -1, 4, -3, 1, -2, 6, -5, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7
Dowker-Thistlethwaite code 4 10 12 14 16 2 6 18 8
Conway Notation [21312]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

9 17 ML.gif 9 17 AP.gif
[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 6}, {5, 7}, {6, 1}, {8, 2}, {7, 10}, {1, 8}]

[edit Notes on presentations of 9 17]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][-3]
Hyperbolic Volume 9.47458
A-Polynomial See Data:9 17/A-polynomial

[edit Notes for 9 17's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 17's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 39, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 17. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        1 -1
3       31 2
1      21  -1
-1     43   1
-3    43    -1
-5   23     -1
-7  24      2
-9 12       -1
-11 2        2
-131         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials