9 18

From Knot Atlas
Jump to navigationJump to search

9 17.gif

9_17

9 19.gif

9_19

9 18.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 18's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 18 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X5,14,6,15 X9,18,10,1 X17,6,18,7 X7,16,8,17 X15,8,16,9 X13,10,14,11 X11,2,12,3
Gauss code -1, 9, -2, 1, -3, 5, -6, 7, -4, 8, -9, 2, -8, 3, -7, 6, -5, 4
Dowker-Thistlethwaite code 4 12 14 16 18 2 10 8 6
Conway Notation [3222]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

9 18 ML.gif 9 18 AP.gif
[{11, 5}, {1, 9}, {8, 10}, {9, 11}, {10, 6}, {5, 7}, {4, 8}, {6, 3}, {2, 4}, {3, 1}, {7, 2}]

[edit Notes on presentations of 9 18]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 10.0577
A-Polynomial See Data:9 18/A-polynomial

[edit Notes for 9 18's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -4

[edit Notes for 9 18's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 4 t^2-10 t+13-10 t^{-1} +4 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 4 z^4+6 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 41, -4 }
Jones polynomial [math]\displaystyle{ q^{-2} -2 q^{-3} +5 q^{-4} -6 q^{-5} +7 q^{-6} -7 q^{-7} +6 q^{-8} -4 q^{-9} +2 q^{-10} - q^{-11} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^{10}-a^{10}+z^4 a^8+z^2 a^8+2 z^4 a^6+4 z^2 a^6+a^6+z^4 a^4+2 z^2 a^4+a^4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^5 a^{13}-3 z^3 a^{13}+2 z a^{13}+2 z^6 a^{12}-5 z^4 a^{12}+3 z^2 a^{12}+2 z^7 a^{11}-3 z^5 a^{11}+z^8 a^{10}+z^6 a^{10}-2 z^4 a^{10}-2 z^2 a^{10}+a^{10}+4 z^7 a^9-5 z^5 a^9+z^3 a^9+z^8 a^8+2 z^6 a^8-2 z^4 a^8+2 z^7 a^7+z^5 a^7-4 z^3 a^7+2 z a^7+3 z^6 a^6-4 z^4 a^6+3 z^2 a^6-a^6+2 z^5 a^5-2 z^3 a^5+z^4 a^4-2 z^2 a^4+a^4 }[/math]
The A2 invariant [math]\displaystyle{ -q^{34}-2 q^{28}+q^{26}+q^{20}-q^{18}+2 q^{16}+q^{12}+2 q^{10}-q^8+q^6 }[/math]
The G2 invariant [math]\displaystyle{ q^{176}-q^{174}+3 q^{172}-4 q^{170}+3 q^{168}-2 q^{166}-2 q^{164}+10 q^{162}-15 q^{160}+18 q^{158}-15 q^{156}+5 q^{154}+9 q^{152}-26 q^{150}+36 q^{148}-37 q^{146}+23 q^{144}-2 q^{142}-24 q^{140}+37 q^{138}-38 q^{136}+27 q^{134}-6 q^{132}-16 q^{130}+24 q^{128}-23 q^{126}+5 q^{124}+16 q^{122}-29 q^{120}+31 q^{118}-16 q^{116}-7 q^{114}+34 q^{112}-51 q^{110}+54 q^{108}-40 q^{106}+9 q^{104}+23 q^{102}-48 q^{100}+58 q^{98}-47 q^{96}+23 q^{94}+4 q^{92}-26 q^{90}+32 q^{88}-25 q^{86}+4 q^{84}+16 q^{82}-23 q^{80}+20 q^{78}-2 q^{76}-18 q^{74}+35 q^{72}-36 q^{70}+29 q^{68}-12 q^{66}-11 q^{64}+29 q^{62}-34 q^{60}+33 q^{58}-18 q^{56}+6 q^{54}+6 q^{52}-14 q^{50}+16 q^{48}-13 q^{46}+9 q^{44}-2 q^{42}-q^{40}+3 q^{38}-3 q^{36}+3 q^{34}-q^{32}+q^{30} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a246,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (6, -15)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 24 }[/math] [math]\displaystyle{ -120 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 748 }[/math] [math]\displaystyle{ 108 }[/math] [math]\displaystyle{ -2880 }[/math] [math]\displaystyle{ -5200 }[/math] [math]\displaystyle{ -896 }[/math] [math]\displaystyle{ -664 }[/math] [math]\displaystyle{ 2304 }[/math] [math]\displaystyle{ 7200 }[/math] [math]\displaystyle{ 17952 }[/math] [math]\displaystyle{ 2592 }[/math] [math]\displaystyle{ \frac{184471}{5} }[/math] [math]\displaystyle{ \frac{17828}{15} }[/math] [math]\displaystyle{ \frac{207524}{15} }[/math] [math]\displaystyle{ \frac{889}{3} }[/math] [math]\displaystyle{ \frac{8791}{5} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 9 18. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        21-1
-7       3  3
-9      32  -1
-11     43   1
-13    33    0
-15   34     -1
-17  13      2
-19 13       -2
-21 1        1
-231         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials