8 15: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 8 |
<!-- -->
k = 15 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-3,7,-8,2,-5,6,-7,3,-4,5,-6,4/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=8|k=15|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-3,7,-8,2,-5,6,-7,3,-4,5,-6,4/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 9 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 9, width is 4.
braid_index = 4 |

same_alexander = [[K11n65]], |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11n65]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.69231%>-8</td ><td width=7.69231%>-7</td ><td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=15.3846%>&chi;</td></tr>
<td width=7.69231%>-8</td ><td width=7.69231%>-7</td ><td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>-1</td></tr>
Line 71: Line 35:
<tr align=center><td>-19</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-19</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-4} -2 q^{-5} + q^{-6} +7 q^{-7} -10 q^{-8} -2 q^{-9} +22 q^{-10} -20 q^{-11} -10 q^{-12} +37 q^{-13} -25 q^{-14} -19 q^{-15} +44 q^{-16} -23 q^{-17} -22 q^{-18} +39 q^{-19} -14 q^{-20} -19 q^{-21} +24 q^{-22} -4 q^{-23} -11 q^{-24} +9 q^{-25} -3 q^{-27} + q^{-28} </math> |

coloured_jones_3 = <math> q^{-6} -2 q^{-7} + q^{-8} +3 q^{-9} +2 q^{-10} -10 q^{-11} -3 q^{-12} +18 q^{-13} +14 q^{-14} -31 q^{-15} -24 q^{-16} +35 q^{-17} +52 q^{-18} -51 q^{-19} -68 q^{-20} +45 q^{-21} +101 q^{-22} -51 q^{-23} -118 q^{-24} +38 q^{-25} +144 q^{-26} -37 q^{-27} -152 q^{-28} +24 q^{-29} +160 q^{-30} -15 q^{-31} -159 q^{-32} +5 q^{-33} +148 q^{-34} +10 q^{-35} -136 q^{-36} -15 q^{-37} +109 q^{-38} +30 q^{-39} -89 q^{-40} -30 q^{-41} +60 q^{-42} +32 q^{-43} -40 q^{-44} -25 q^{-45} +20 q^{-46} +20 q^{-47} -11 q^{-48} -11 q^{-49} +4 q^{-50} +5 q^{-51} -3 q^{-53} + q^{-54} </math> |
{{Display Coloured Jones|J2=<math> q^{-4} -2 q^{-5} + q^{-6} +7 q^{-7} -10 q^{-8} -2 q^{-9} +22 q^{-10} -20 q^{-11} -10 q^{-12} +37 q^{-13} -25 q^{-14} -19 q^{-15} +44 q^{-16} -23 q^{-17} -22 q^{-18} +39 q^{-19} -14 q^{-20} -19 q^{-21} +24 q^{-22} -4 q^{-23} -11 q^{-24} +9 q^{-25} -3 q^{-27} + q^{-28} </math>|J3=<math> q^{-6} -2 q^{-7} + q^{-8} +3 q^{-9} +2 q^{-10} -10 q^{-11} -3 q^{-12} +18 q^{-13} +14 q^{-14} -31 q^{-15} -24 q^{-16} +35 q^{-17} +52 q^{-18} -51 q^{-19} -68 q^{-20} +45 q^{-21} +101 q^{-22} -51 q^{-23} -118 q^{-24} +38 q^{-25} +144 q^{-26} -37 q^{-27} -152 q^{-28} +24 q^{-29} +160 q^{-30} -15 q^{-31} -159 q^{-32} +5 q^{-33} +148 q^{-34} +10 q^{-35} -136 q^{-36} -15 q^{-37} +109 q^{-38} +30 q^{-39} -89 q^{-40} -30 q^{-41} +60 q^{-42} +32 q^{-43} -40 q^{-44} -25 q^{-45} +20 q^{-46} +20 q^{-47} -11 q^{-48} -11 q^{-49} +4 q^{-50} +5 q^{-51} -3 q^{-53} + q^{-54} </math>|J4=<math> q^{-8} -2 q^{-9} + q^{-10} +3 q^{-11} -2 q^{-12} +2 q^{-13} -11 q^{-14} +3 q^{-15} +19 q^{-16} + q^{-17} +4 q^{-18} -51 q^{-19} -11 q^{-20} +57 q^{-21} +39 q^{-22} +36 q^{-23} -133 q^{-24} -82 q^{-25} +78 q^{-26} +120 q^{-27} +153 q^{-28} -216 q^{-29} -221 q^{-30} +31 q^{-31} +204 q^{-32} +350 q^{-33} -240 q^{-34} -373 q^{-35} -89 q^{-36} +240 q^{-37} +563 q^{-38} -200 q^{-39} -482 q^{-40} -228 q^{-41} +226 q^{-42} +718 q^{-43} -132 q^{-44} -522 q^{-45} -336 q^{-46} +179 q^{-47} +788 q^{-48} -60 q^{-49} -496 q^{-50} -394 q^{-51} +105 q^{-52} +764 q^{-53} +19 q^{-54} -402 q^{-55} -406 q^{-56} +6 q^{-57} +646 q^{-58} +93 q^{-59} -251 q^{-60} -356 q^{-61} -94 q^{-62} +449 q^{-63} +128 q^{-64} -86 q^{-65} -246 q^{-66} -143 q^{-67} +239 q^{-68} +101 q^{-69} +18 q^{-70} -118 q^{-71} -117 q^{-72} +89 q^{-73} +45 q^{-74} +39 q^{-75} -34 q^{-76} -59 q^{-77} +23 q^{-78} +9 q^{-79} +20 q^{-80} -4 q^{-81} -18 q^{-82} +4 q^{-83} +5 q^{-85} -3 q^{-87} + q^{-88} </math>|J5=<math> q^{-10} -2 q^{-11} + q^{-12} +3 q^{-13} -2 q^{-14} -2 q^{-15} + q^{-16} -5 q^{-17} +4 q^{-18} +16 q^{-19} +3 q^{-20} -15 q^{-21} -17 q^{-22} -27 q^{-23} +13 q^{-24} +61 q^{-25} +59 q^{-26} -12 q^{-27} -88 q^{-28} -134 q^{-29} -40 q^{-30} +143 q^{-31} +232 q^{-32} +127 q^{-33} -134 q^{-34} -383 q^{-35} -294 q^{-36} +115 q^{-37} +499 q^{-38} +510 q^{-39} +49 q^{-40} -640 q^{-41} -805 q^{-42} -205 q^{-43} +656 q^{-44} +1077 q^{-45} +551 q^{-46} -667 q^{-47} -1385 q^{-48} -827 q^{-49} +542 q^{-50} +1584 q^{-51} +1247 q^{-52} -414 q^{-53} -1793 q^{-54} -1526 q^{-55} +190 q^{-56} +1883 q^{-57} +1874 q^{-58} -8 q^{-59} -1965 q^{-60} -2072 q^{-61} -211 q^{-62} +1956 q^{-63} +2293 q^{-64} +372 q^{-65} -1944 q^{-66} -2389 q^{-67} -542 q^{-68} +1870 q^{-69} +2477 q^{-70} +680 q^{-71} -1777 q^{-72} -2493 q^{-73} -805 q^{-74} +1631 q^{-75} +2454 q^{-76} +941 q^{-77} -1439 q^{-78} -2387 q^{-79} -1038 q^{-80} +1209 q^{-81} +2203 q^{-82} +1153 q^{-83} -911 q^{-84} -2025 q^{-85} -1188 q^{-86} +621 q^{-87} +1703 q^{-88} +1211 q^{-89} -299 q^{-90} -1403 q^{-91} -1137 q^{-92} +54 q^{-93} +1017 q^{-94} +1021 q^{-95} +160 q^{-96} -706 q^{-97} -821 q^{-98} -268 q^{-99} +396 q^{-100} +627 q^{-101} +308 q^{-102} -200 q^{-103} -414 q^{-104} -270 q^{-105} +42 q^{-106} +259 q^{-107} +214 q^{-108} +12 q^{-109} -136 q^{-110} -136 q^{-111} -41 q^{-112} +58 q^{-113} +88 q^{-114} +36 q^{-115} -26 q^{-116} -44 q^{-117} -20 q^{-118} +3 q^{-119} +18 q^{-120} +20 q^{-121} -4 q^{-122} -11 q^{-123} -3 q^{-124} +5 q^{-127} -3 q^{-129} + q^{-130} </math>|J6=<math> q^{-12} -2 q^{-13} + q^{-14} +3 q^{-15} -2 q^{-16} -2 q^{-17} -3 q^{-18} +7 q^{-19} -4 q^{-20} + q^{-21} +18 q^{-22} -6 q^{-23} -14 q^{-24} -25 q^{-25} +9 q^{-26} -4 q^{-27} +20 q^{-28} +82 q^{-29} +17 q^{-30} -42 q^{-31} -124 q^{-32} -60 q^{-33} -73 q^{-34} +60 q^{-35} +299 q^{-36} +216 q^{-37} +49 q^{-38} -301 q^{-39} -346 q^{-40} -472 q^{-41} -113 q^{-42} +618 q^{-43} +804 q^{-44} +644 q^{-45} -179 q^{-46} -714 q^{-47} -1468 q^{-48} -1020 q^{-49} +496 q^{-50} +1564 q^{-51} +2011 q^{-52} +879 q^{-53} -459 q^{-54} -2719 q^{-55} -2904 q^{-56} -790 q^{-57} +1677 q^{-58} +3681 q^{-59} +3049 q^{-60} +1117 q^{-61} -3312 q^{-62} -5153 q^{-63} -3295 q^{-64} +491 q^{-65} +4699 q^{-66} +5613 q^{-67} +3891 q^{-68} -2673 q^{-69} -6793 q^{-70} -6189 q^{-71} -1759 q^{-72} +4584 q^{-73} +7623 q^{-74} +6936 q^{-75} -1104 q^{-76} -7386 q^{-77} -8535 q^{-78} -4188 q^{-79} +3648 q^{-80} +8682 q^{-81} +9364 q^{-82} +622 q^{-83} -7176 q^{-84} -9954 q^{-85} -6082 q^{-86} +2500 q^{-87} +8961 q^{-88} +10872 q^{-89} +1999 q^{-90} -6597 q^{-91} -10565 q^{-92} -7282 q^{-93} +1444 q^{-94} +8747 q^{-95} +11598 q^{-96} +3029 q^{-97} -5800 q^{-98} -10582 q^{-99} -7983 q^{-100} +381 q^{-101} +8084 q^{-102} +11714 q^{-103} +3946 q^{-104} -4607 q^{-105} -9983 q^{-106} -8338 q^{-107} -922 q^{-108} +6758 q^{-109} +11131 q^{-110} +4841 q^{-111} -2802 q^{-112} -8521 q^{-113} -8179 q^{-114} -2448 q^{-115} +4601 q^{-116} +9567 q^{-117} +5393 q^{-118} -556 q^{-119} -6075 q^{-120} -7120 q^{-121} -3682 q^{-122} +1937 q^{-123} +6946 q^{-124} +5054 q^{-125} +1386 q^{-126} -3121 q^{-127} -5044 q^{-128} -3915 q^{-129} -317 q^{-130} +3866 q^{-131} +3649 q^{-132} +2197 q^{-133} -685 q^{-134} -2574 q^{-135} -2977 q^{-136} -1340 q^{-137} +1399 q^{-138} +1826 q^{-139} +1782 q^{-140} +478 q^{-141} -716 q^{-142} -1572 q^{-143} -1173 q^{-144} +170 q^{-145} +506 q^{-146} +898 q^{-147} +546 q^{-148} +87 q^{-149} -552 q^{-150} -592 q^{-151} -98 q^{-152} -17 q^{-153} +280 q^{-154} +257 q^{-155} +183 q^{-156} -121 q^{-157} -198 q^{-158} -47 q^{-159} -74 q^{-160} +47 q^{-161} +69 q^{-162} +91 q^{-163} -18 q^{-164} -47 q^{-165} -5 q^{-166} -31 q^{-167} +3 q^{-168} +9 q^{-169} +29 q^{-170} -4 q^{-171} -11 q^{-172} +4 q^{-173} -7 q^{-174} +5 q^{-177} -3 q^{-179} + q^{-180} </math>|J7=<math> q^{-14} -2 q^{-15} + q^{-16} +3 q^{-17} -2 q^{-18} -2 q^{-19} -3 q^{-20} +3 q^{-21} +8 q^{-22} -7 q^{-23} +3 q^{-24} +9 q^{-25} -5 q^{-26} -12 q^{-27} -22 q^{-28} +35 q^{-30} +4 q^{-31} +29 q^{-32} +35 q^{-33} -13 q^{-34} -53 q^{-35} -126 q^{-36} -76 q^{-37} +47 q^{-38} +77 q^{-39} +199 q^{-40} +233 q^{-41} +88 q^{-42} -100 q^{-43} -440 q^{-44} -525 q^{-45} -273 q^{-46} -5 q^{-47} +593 q^{-48} +972 q^{-49} +869 q^{-50} +389 q^{-51} -720 q^{-52} -1582 q^{-53} -1698 q^{-54} -1248 q^{-55} +377 q^{-56} +2113 q^{-57} +2971 q^{-58} +2752 q^{-59} +538 q^{-60} -2251 q^{-61} -4283 q^{-62} -4961 q^{-63} -2506 q^{-64} +1649 q^{-65} +5479 q^{-66} +7594 q^{-67} +5418 q^{-68} +195 q^{-69} -5775 q^{-70} -10470 q^{-71} -9460 q^{-72} -3321 q^{-73} +5123 q^{-74} +12813 q^{-75} +13835 q^{-76} +7927 q^{-77} -2683 q^{-78} -14330 q^{-79} -18648 q^{-80} -13455 q^{-81} -932 q^{-82} +14463 q^{-83} +22554 q^{-84} +19601 q^{-85} +6291 q^{-86} -13197 q^{-87} -25969 q^{-88} -25701 q^{-89} -12026 q^{-90} +10580 q^{-91} +27728 q^{-92} +31256 q^{-93} +18529 q^{-94} -6954 q^{-95} -28747 q^{-96} -35892 q^{-97} -24396 q^{-98} +2813 q^{-99} +28289 q^{-100} +39474 q^{-101} +30019 q^{-102} +1428 q^{-103} -27450 q^{-104} -41993 q^{-105} -34422 q^{-106} -5428 q^{-107} +25855 q^{-108} +43610 q^{-109} +38187 q^{-110} +8921 q^{-111} -24374 q^{-112} -44475 q^{-113} -40815 q^{-114} -11853 q^{-115} +22629 q^{-116} +44836 q^{-117} +42923 q^{-118} +14253 q^{-119} -21172 q^{-120} -44808 q^{-121} -44255 q^{-122} -16241 q^{-123} +19570 q^{-124} +44457 q^{-125} +45310 q^{-126} +18010 q^{-127} -18022 q^{-128} -43820 q^{-129} -45938 q^{-130} -19653 q^{-131} +16181 q^{-132} +42728 q^{-133} +46276 q^{-134} +21395 q^{-135} -13920 q^{-136} -41152 q^{-137} -46293 q^{-138} -23147 q^{-139} +11205 q^{-140} +38759 q^{-141} +45645 q^{-142} +25027 q^{-143} -7705 q^{-144} -35542 q^{-145} -44468 q^{-146} -26695 q^{-147} +3879 q^{-148} +31235 q^{-149} +42093 q^{-150} +28009 q^{-151} +598 q^{-152} -26035 q^{-153} -38856 q^{-154} -28555 q^{-155} -4784 q^{-156} +20059 q^{-157} +34166 q^{-158} +28072 q^{-159} +8765 q^{-160} -13734 q^{-161} -28722 q^{-162} -26344 q^{-163} -11572 q^{-164} +7629 q^{-165} +22422 q^{-166} +23332 q^{-167} +13290 q^{-168} -2311 q^{-169} -16171 q^{-170} -19357 q^{-171} -13373 q^{-172} -1746 q^{-173} +10239 q^{-174} +14864 q^{-175} +12281 q^{-176} +4278 q^{-177} -5489 q^{-178} -10336 q^{-179} -10095 q^{-180} -5371 q^{-181} +1885 q^{-182} +6422 q^{-183} +7634 q^{-184} +5202 q^{-185} +204 q^{-186} -3350 q^{-187} -5056 q^{-188} -4347 q^{-189} -1288 q^{-190} +1312 q^{-191} +3053 q^{-192} +3187 q^{-193} +1417 q^{-194} -167 q^{-195} -1526 q^{-196} -2043 q^{-197} -1225 q^{-198} -356 q^{-199} +639 q^{-200} +1216 q^{-201} +838 q^{-202} +408 q^{-203} -166 q^{-204} -603 q^{-205} -476 q^{-206} -375 q^{-207} -46 q^{-208} +307 q^{-209} +268 q^{-210} +227 q^{-211} +52 q^{-212} -117 q^{-213} -89 q^{-214} -137 q^{-215} -85 q^{-216} +50 q^{-217} +59 q^{-218} +72 q^{-219} +26 q^{-220} -28 q^{-221} +3 q^{-222} -27 q^{-223} -31 q^{-224} +3 q^{-225} +9 q^{-226} +20 q^{-227} +5 q^{-228} -11 q^{-229} +4 q^{-230} -7 q^{-232} +5 q^{-235} -3 q^{-237} + q^{-238} </math>}}
coloured_jones_4 = <math> q^{-8} -2 q^{-9} + q^{-10} +3 q^{-11} -2 q^{-12} +2 q^{-13} -11 q^{-14} +3 q^{-15} +19 q^{-16} + q^{-17} +4 q^{-18} -51 q^{-19} -11 q^{-20} +57 q^{-21} +39 q^{-22} +36 q^{-23} -133 q^{-24} -82 q^{-25} +78 q^{-26} +120 q^{-27} +153 q^{-28} -216 q^{-29} -221 q^{-30} +31 q^{-31} +204 q^{-32} +350 q^{-33} -240 q^{-34} -373 q^{-35} -89 q^{-36} +240 q^{-37} +563 q^{-38} -200 q^{-39} -482 q^{-40} -228 q^{-41} +226 q^{-42} +718 q^{-43} -132 q^{-44} -522 q^{-45} -336 q^{-46} +179 q^{-47} +788 q^{-48} -60 q^{-49} -496 q^{-50} -394 q^{-51} +105 q^{-52} +764 q^{-53} +19 q^{-54} -402 q^{-55} -406 q^{-56} +6 q^{-57} +646 q^{-58} +93 q^{-59} -251 q^{-60} -356 q^{-61} -94 q^{-62} +449 q^{-63} +128 q^{-64} -86 q^{-65} -246 q^{-66} -143 q^{-67} +239 q^{-68} +101 q^{-69} +18 q^{-70} -118 q^{-71} -117 q^{-72} +89 q^{-73} +45 q^{-74} +39 q^{-75} -34 q^{-76} -59 q^{-77} +23 q^{-78} +9 q^{-79} +20 q^{-80} -4 q^{-81} -18 q^{-82} +4 q^{-83} +5 q^{-85} -3 q^{-87} + q^{-88} </math> |

coloured_jones_5 = <math> q^{-10} -2 q^{-11} + q^{-12} +3 q^{-13} -2 q^{-14} -2 q^{-15} + q^{-16} -5 q^{-17} +4 q^{-18} +16 q^{-19} +3 q^{-20} -15 q^{-21} -17 q^{-22} -27 q^{-23} +13 q^{-24} +61 q^{-25} +59 q^{-26} -12 q^{-27} -88 q^{-28} -134 q^{-29} -40 q^{-30} +143 q^{-31} +232 q^{-32} +127 q^{-33} -134 q^{-34} -383 q^{-35} -294 q^{-36} +115 q^{-37} +499 q^{-38} +510 q^{-39} +49 q^{-40} -640 q^{-41} -805 q^{-42} -205 q^{-43} +656 q^{-44} +1077 q^{-45} +551 q^{-46} -667 q^{-47} -1385 q^{-48} -827 q^{-49} +542 q^{-50} +1584 q^{-51} +1247 q^{-52} -414 q^{-53} -1793 q^{-54} -1526 q^{-55} +190 q^{-56} +1883 q^{-57} +1874 q^{-58} -8 q^{-59} -1965 q^{-60} -2072 q^{-61} -211 q^{-62} +1956 q^{-63} +2293 q^{-64} +372 q^{-65} -1944 q^{-66} -2389 q^{-67} -542 q^{-68} +1870 q^{-69} +2477 q^{-70} +680 q^{-71} -1777 q^{-72} -2493 q^{-73} -805 q^{-74} +1631 q^{-75} +2454 q^{-76} +941 q^{-77} -1439 q^{-78} -2387 q^{-79} -1038 q^{-80} +1209 q^{-81} +2203 q^{-82} +1153 q^{-83} -911 q^{-84} -2025 q^{-85} -1188 q^{-86} +621 q^{-87} +1703 q^{-88} +1211 q^{-89} -299 q^{-90} -1403 q^{-91} -1137 q^{-92} +54 q^{-93} +1017 q^{-94} +1021 q^{-95} +160 q^{-96} -706 q^{-97} -821 q^{-98} -268 q^{-99} +396 q^{-100} +627 q^{-101} +308 q^{-102} -200 q^{-103} -414 q^{-104} -270 q^{-105} +42 q^{-106} +259 q^{-107} +214 q^{-108} +12 q^{-109} -136 q^{-110} -136 q^{-111} -41 q^{-112} +58 q^{-113} +88 q^{-114} +36 q^{-115} -26 q^{-116} -44 q^{-117} -20 q^{-118} +3 q^{-119} +18 q^{-120} +20 q^{-121} -4 q^{-122} -11 q^{-123} -3 q^{-124} +5 q^{-127} -3 q^{-129} + q^{-130} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math> q^{-12} -2 q^{-13} + q^{-14} +3 q^{-15} -2 q^{-16} -2 q^{-17} -3 q^{-18} +7 q^{-19} -4 q^{-20} + q^{-21} +18 q^{-22} -6 q^{-23} -14 q^{-24} -25 q^{-25} +9 q^{-26} -4 q^{-27} +20 q^{-28} +82 q^{-29} +17 q^{-30} -42 q^{-31} -124 q^{-32} -60 q^{-33} -73 q^{-34} +60 q^{-35} +299 q^{-36} +216 q^{-37} +49 q^{-38} -301 q^{-39} -346 q^{-40} -472 q^{-41} -113 q^{-42} +618 q^{-43} +804 q^{-44} +644 q^{-45} -179 q^{-46} -714 q^{-47} -1468 q^{-48} -1020 q^{-49} +496 q^{-50} +1564 q^{-51} +2011 q^{-52} +879 q^{-53} -459 q^{-54} -2719 q^{-55} -2904 q^{-56} -790 q^{-57} +1677 q^{-58} +3681 q^{-59} +3049 q^{-60} +1117 q^{-61} -3312 q^{-62} -5153 q^{-63} -3295 q^{-64} +491 q^{-65} +4699 q^{-66} +5613 q^{-67} +3891 q^{-68} -2673 q^{-69} -6793 q^{-70} -6189 q^{-71} -1759 q^{-72} +4584 q^{-73} +7623 q^{-74} +6936 q^{-75} -1104 q^{-76} -7386 q^{-77} -8535 q^{-78} -4188 q^{-79} +3648 q^{-80} +8682 q^{-81} +9364 q^{-82} +622 q^{-83} -7176 q^{-84} -9954 q^{-85} -6082 q^{-86} +2500 q^{-87} +8961 q^{-88} +10872 q^{-89} +1999 q^{-90} -6597 q^{-91} -10565 q^{-92} -7282 q^{-93} +1444 q^{-94} +8747 q^{-95} +11598 q^{-96} +3029 q^{-97} -5800 q^{-98} -10582 q^{-99} -7983 q^{-100} +381 q^{-101} +8084 q^{-102} +11714 q^{-103} +3946 q^{-104} -4607 q^{-105} -9983 q^{-106} -8338 q^{-107} -922 q^{-108} +6758 q^{-109} +11131 q^{-110} +4841 q^{-111} -2802 q^{-112} -8521 q^{-113} -8179 q^{-114} -2448 q^{-115} +4601 q^{-116} +9567 q^{-117} +5393 q^{-118} -556 q^{-119} -6075 q^{-120} -7120 q^{-121} -3682 q^{-122} +1937 q^{-123} +6946 q^{-124} +5054 q^{-125} +1386 q^{-126} -3121 q^{-127} -5044 q^{-128} -3915 q^{-129} -317 q^{-130} +3866 q^{-131} +3649 q^{-132} +2197 q^{-133} -685 q^{-134} -2574 q^{-135} -2977 q^{-136} -1340 q^{-137} +1399 q^{-138} +1826 q^{-139} +1782 q^{-140} +478 q^{-141} -716 q^{-142} -1572 q^{-143} -1173 q^{-144} +170 q^{-145} +506 q^{-146} +898 q^{-147} +546 q^{-148} +87 q^{-149} -552 q^{-150} -592 q^{-151} -98 q^{-152} -17 q^{-153} +280 q^{-154} +257 q^{-155} +183 q^{-156} -121 q^{-157} -198 q^{-158} -47 q^{-159} -74 q^{-160} +47 q^{-161} +69 q^{-162} +91 q^{-163} -18 q^{-164} -47 q^{-165} -5 q^{-166} -31 q^{-167} +3 q^{-168} +9 q^{-169} +29 q^{-170} -4 q^{-171} -11 q^{-172} +4 q^{-173} -7 q^{-174} +5 q^{-177} -3 q^{-179} + q^{-180} </math> |

coloured_jones_7 = <math> q^{-14} -2 q^{-15} + q^{-16} +3 q^{-17} -2 q^{-18} -2 q^{-19} -3 q^{-20} +3 q^{-21} +8 q^{-22} -7 q^{-23} +3 q^{-24} +9 q^{-25} -5 q^{-26} -12 q^{-27} -22 q^{-28} +35 q^{-30} +4 q^{-31} +29 q^{-32} +35 q^{-33} -13 q^{-34} -53 q^{-35} -126 q^{-36} -76 q^{-37} +47 q^{-38} +77 q^{-39} +199 q^{-40} +233 q^{-41} +88 q^{-42} -100 q^{-43} -440 q^{-44} -525 q^{-45} -273 q^{-46} -5 q^{-47} +593 q^{-48} +972 q^{-49} +869 q^{-50} +389 q^{-51} -720 q^{-52} -1582 q^{-53} -1698 q^{-54} -1248 q^{-55} +377 q^{-56} +2113 q^{-57} +2971 q^{-58} +2752 q^{-59} +538 q^{-60} -2251 q^{-61} -4283 q^{-62} -4961 q^{-63} -2506 q^{-64} +1649 q^{-65} +5479 q^{-66} +7594 q^{-67} +5418 q^{-68} +195 q^{-69} -5775 q^{-70} -10470 q^{-71} -9460 q^{-72} -3321 q^{-73} +5123 q^{-74} +12813 q^{-75} +13835 q^{-76} +7927 q^{-77} -2683 q^{-78} -14330 q^{-79} -18648 q^{-80} -13455 q^{-81} -932 q^{-82} +14463 q^{-83} +22554 q^{-84} +19601 q^{-85} +6291 q^{-86} -13197 q^{-87} -25969 q^{-88} -25701 q^{-89} -12026 q^{-90} +10580 q^{-91} +27728 q^{-92} +31256 q^{-93} +18529 q^{-94} -6954 q^{-95} -28747 q^{-96} -35892 q^{-97} -24396 q^{-98} +2813 q^{-99} +28289 q^{-100} +39474 q^{-101} +30019 q^{-102} +1428 q^{-103} -27450 q^{-104} -41993 q^{-105} -34422 q^{-106} -5428 q^{-107} +25855 q^{-108} +43610 q^{-109} +38187 q^{-110} +8921 q^{-111} -24374 q^{-112} -44475 q^{-113} -40815 q^{-114} -11853 q^{-115} +22629 q^{-116} +44836 q^{-117} +42923 q^{-118} +14253 q^{-119} -21172 q^{-120} -44808 q^{-121} -44255 q^{-122} -16241 q^{-123} +19570 q^{-124} +44457 q^{-125} +45310 q^{-126} +18010 q^{-127} -18022 q^{-128} -43820 q^{-129} -45938 q^{-130} -19653 q^{-131} +16181 q^{-132} +42728 q^{-133} +46276 q^{-134} +21395 q^{-135} -13920 q^{-136} -41152 q^{-137} -46293 q^{-138} -23147 q^{-139} +11205 q^{-140} +38759 q^{-141} +45645 q^{-142} +25027 q^{-143} -7705 q^{-144} -35542 q^{-145} -44468 q^{-146} -26695 q^{-147} +3879 q^{-148} +31235 q^{-149} +42093 q^{-150} +28009 q^{-151} +598 q^{-152} -26035 q^{-153} -38856 q^{-154} -28555 q^{-155} -4784 q^{-156} +20059 q^{-157} +34166 q^{-158} +28072 q^{-159} +8765 q^{-160} -13734 q^{-161} -28722 q^{-162} -26344 q^{-163} -11572 q^{-164} +7629 q^{-165} +22422 q^{-166} +23332 q^{-167} +13290 q^{-168} -2311 q^{-169} -16171 q^{-170} -19357 q^{-171} -13373 q^{-172} -1746 q^{-173} +10239 q^{-174} +14864 q^{-175} +12281 q^{-176} +4278 q^{-177} -5489 q^{-178} -10336 q^{-179} -10095 q^{-180} -5371 q^{-181} +1885 q^{-182} +6422 q^{-183} +7634 q^{-184} +5202 q^{-185} +204 q^{-186} -3350 q^{-187} -5056 q^{-188} -4347 q^{-189} -1288 q^{-190} +1312 q^{-191} +3053 q^{-192} +3187 q^{-193} +1417 q^{-194} -167 q^{-195} -1526 q^{-196} -2043 q^{-197} -1225 q^{-198} -356 q^{-199} +639 q^{-200} +1216 q^{-201} +838 q^{-202} +408 q^{-203} -166 q^{-204} -603 q^{-205} -476 q^{-206} -375 q^{-207} -46 q^{-208} +307 q^{-209} +268 q^{-210} +227 q^{-211} +52 q^{-212} -117 q^{-213} -89 q^{-214} -137 q^{-215} -85 q^{-216} +50 q^{-217} +59 q^{-218} +72 q^{-219} +26 q^{-220} -28 q^{-221} +3 q^{-222} -27 q^{-223} -31 q^{-224} +3 q^{-225} +9 q^{-226} +20 q^{-227} +5 q^{-228} -11 q^{-229} +4 q^{-230} -7 q^{-232} +5 q^{-235} -3 q^{-237} + q^{-238} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[13, 16, 14, 1],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[13, 16, 14, 1],
X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr>
X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 15]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 1, -3, 7, -8, 2, -5, 6, -7, 3, -4, 5, -6, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 1, -3, 7, -8, 2, -5, 6, -7, 3, -4, 5, -6, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 12, 2, 14, 6, 16, 10]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 12, 2, 14, 6, 16, 10]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, -2, -2, -2, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, -2, -2, -2, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 15]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_15_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 15]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, {4, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 15]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 8 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 15]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_15_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 15]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, {4, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 15]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 8 2
11 + -- - - - 8 t + 3 t
11 + -- - - - 8 t + 3 t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 15]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 15]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
1 + 4 z + 3 z</nowiki></pre></td></tr>
1 + 4 z + 3 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 15], Knot[11, NonAlternating, 65]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 15], Knot[11, NonAlternating, 65]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 15]], KnotSignature[Knot[8, 15]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{33, -4}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 15]], KnotSignature[Knot[8, 15]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 15]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{33, -4}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 3 4 6 6 5 5 2 -2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 15]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 3 4 6 6 5 5 2 -2
q - -- + -- - -- + -- - -- + -- - -- + q
q - -- + -- - -- + -- - -- + -- - -- + q
9 8 7 6 5 4 3
9 8 7 6 5 4 3
q q q q q q q</nowiki></pre></td></tr>
q q q q q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 15]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 15]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 15]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -32 -30 2 -26 2 2 -20 3 -14 -12 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 15]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -32 -30 2 -26 2 2 -20 3 -14 -12 2
q + q - --- - q - --- - --- + q + --- + q + q + --- -
q + q - --- - q - --- - --- + q + --- + q + q + --- -
28 24 22 16 10
28 24 22 16 10
Line 142: Line 93:
-8 -6
-8 -6
q + q</nowiki></pre></td></tr>
q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 15]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 15]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 4 2 6 2 8 2 4 4 6 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 4 2 6 2 8 2 4 4 6 4
a + 3 a - 4 a + a + 2 a z + 5 a z - 3 a z + a z + 2 a z</nowiki></pre></td></tr>
a + 3 a - 4 a + a + 2 a z + 5 a z - 3 a z + a z + 2 a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 15]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 15]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 7 9 11 4 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 7 9 11 4 2
a - 3 a - 4 a - a + 6 a z + 8 a z + 2 a z - 2 a z +
a - 3 a - 4 a - a + 6 a z + 8 a z + 2 a z - 2 a z +
Line 162: Line 111:
9 7
9 7
a z</nowiki></pre></td></tr>
a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 15]], Vassiliev[3][Knot[8, 15]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 15]], Vassiliev[3][Knot[8, 15]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, -7}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, -7}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 15]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 -3 1 2 1 2 2 4

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 15]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 -3 1 2 1 2 2 4
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
21 8 19 7 17 7 17 6 15 6 15 5
21 8 19 7 17 7 17 6 15 6 15 5
Line 176: Line 123:
13 5 13 4 11 4 11 3 9 3 9 2 7 2 5
13 5 13 4 11 4 11 3 9 3 9 2 7 2 5
q t q t q t q t q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t q t q t q t q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 15], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 15], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 3 9 11 4 24 19 14 39 22 23
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 3 9 11 4 24 19 14 39 22 23
q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- +
q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- +
27 25 24 23 22 21 20 19 18 17
27 25 24 23 22 21 20 19 18 17
Line 190: Line 136:
-4
-4
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:39, 30 August 2005

8 14.gif

8_14

8 16.gif

8_16

8 15.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 15's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 15 at Knotilus!


Two trefoil knots along a closed loop, mutually interlinked. (See also 10 120.)

Symmetrical depiction.

Knot presentations

Planar diagram presentation X1425 X3849 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X7283
Gauss code -1, 8, -2, 1, -3, 7, -8, 2, -5, 6, -7, 3, -4, 5, -6, 4
Dowker-Thistlethwaite code 4 8 12 2 14 6 16 10
Conway Notation [21,21,2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

8 15 ML.gif 8 15 AP.gif
[{11, 3}, {2, 9}, {7, 10}, {9, 11}, {8, 4}, {3, 7}, {4, 1}, {5, 8}, {6, 2}, {10, 5}, {1, 6}]

[edit Notes on presentations of 8 15]

Knot 8_15.
A graph, knot 8_15.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-13][3]
Hyperbolic Volume 9.93065
A-Polynomial See Data:8 15/A-polynomial

[edit Notes for 8 15's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 8 15's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 33, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n65,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, -7)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 8 15. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-3        11
-5       21-1
-7      3  3
-9     22  0
-11    43   1
-13   22    0
-15  24     -2
-17 12      1
-19 2       -2
-211        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials