9 7: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- -->
k = 7 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,5,-4,8,-6,7,-9,2,-7,6,-8,3,-5,4/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=7|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,5,-4,8,-6,7,-9,2,-7,6,-8,3,-5,4/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 11 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 11, width is 4.
braid_index = 4 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
Line 72: Line 36:
<tr align=center><td>-21</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-21</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-4} - q^{-5} +3 q^{-7} -3 q^{-8} +7 q^{-10} -9 q^{-11} +14 q^{-13} -16 q^{-14} -2 q^{-15} +21 q^{-16} -19 q^{-17} -4 q^{-18} +22 q^{-19} -16 q^{-20} -6 q^{-21} +18 q^{-22} -9 q^{-23} -7 q^{-24} +12 q^{-25} -3 q^{-26} -6 q^{-27} +5 q^{-28} -2 q^{-30} + q^{-31} </math> |

coloured_jones_3 = <math> q^{-6} - q^{-7} +3 q^{-10} -2 q^{-11} - q^{-13} +4 q^{-14} -3 q^{-15} + q^{-16} +3 q^{-18} -9 q^{-19} +4 q^{-20} +9 q^{-21} + q^{-22} -21 q^{-23} +26 q^{-25} +5 q^{-26} -35 q^{-27} -8 q^{-28} +38 q^{-29} +14 q^{-30} -41 q^{-31} -17 q^{-32} +41 q^{-33} +19 q^{-34} -37 q^{-35} -23 q^{-36} +33 q^{-37} +24 q^{-38} -26 q^{-39} -26 q^{-40} +19 q^{-41} +27 q^{-42} -11 q^{-43} -26 q^{-44} +3 q^{-45} +24 q^{-46} +3 q^{-47} -20 q^{-48} -6 q^{-49} +13 q^{-50} +9 q^{-51} -9 q^{-52} -7 q^{-53} +4 q^{-54} +5 q^{-55} -2 q^{-56} -2 q^{-57} +2 q^{-59} - q^{-60} </math> |
{{Display Coloured Jones|J2=<math> q^{-4} - q^{-5} +3 q^{-7} -3 q^{-8} +7 q^{-10} -9 q^{-11} +14 q^{-13} -16 q^{-14} -2 q^{-15} +21 q^{-16} -19 q^{-17} -4 q^{-18} +22 q^{-19} -16 q^{-20} -6 q^{-21} +18 q^{-22} -9 q^{-23} -7 q^{-24} +12 q^{-25} -3 q^{-26} -6 q^{-27} +5 q^{-28} -2 q^{-30} + q^{-31} </math>|J3=<math> q^{-6} - q^{-7} +3 q^{-10} -2 q^{-11} - q^{-13} +4 q^{-14} -3 q^{-15} + q^{-16} +3 q^{-18} -9 q^{-19} +4 q^{-20} +9 q^{-21} + q^{-22} -21 q^{-23} +26 q^{-25} +5 q^{-26} -35 q^{-27} -8 q^{-28} +38 q^{-29} +14 q^{-30} -41 q^{-31} -17 q^{-32} +41 q^{-33} +19 q^{-34} -37 q^{-35} -23 q^{-36} +33 q^{-37} +24 q^{-38} -26 q^{-39} -26 q^{-40} +19 q^{-41} +27 q^{-42} -11 q^{-43} -26 q^{-44} +3 q^{-45} +24 q^{-46} +3 q^{-47} -20 q^{-48} -6 q^{-49} +13 q^{-50} +9 q^{-51} -9 q^{-52} -7 q^{-53} +4 q^{-54} +5 q^{-55} -2 q^{-56} -2 q^{-57} +2 q^{-59} - q^{-60} </math>|J4=<math> q^{-8} - q^{-9} +4 q^{-13} -3 q^{-14} - q^{-16} -3 q^{-17} +10 q^{-18} -4 q^{-19} +2 q^{-20} -4 q^{-21} -11 q^{-22} +16 q^{-23} -3 q^{-24} +11 q^{-25} -5 q^{-26} -27 q^{-27} +15 q^{-28} -7 q^{-29} +33 q^{-30} +10 q^{-31} -46 q^{-32} -2 q^{-33} -30 q^{-34} +60 q^{-35} +49 q^{-36} -49 q^{-37} -24 q^{-38} -80 q^{-39} +73 q^{-40} +97 q^{-41} -31 q^{-42} -34 q^{-43} -132 q^{-44} +67 q^{-45} +126 q^{-46} -9 q^{-47} -25 q^{-48} -163 q^{-49} +53 q^{-50} +133 q^{-51} +3 q^{-52} -10 q^{-53} -168 q^{-54} +39 q^{-55} +119 q^{-56} +10 q^{-57} +10 q^{-58} -154 q^{-59} +19 q^{-60} +90 q^{-61} +16 q^{-62} +35 q^{-63} -124 q^{-64} -4 q^{-65} +47 q^{-66} +16 q^{-67} +62 q^{-68} -81 q^{-69} -18 q^{-70} +3 q^{-71} +2 q^{-72} +73 q^{-73} -34 q^{-74} -12 q^{-75} -24 q^{-76} -19 q^{-77} +58 q^{-78} -4 q^{-79} +5 q^{-80} -22 q^{-81} -28 q^{-82} +29 q^{-83} +3 q^{-84} +13 q^{-85} -8 q^{-86} -19 q^{-87} +10 q^{-88} - q^{-89} +7 q^{-90} -7 q^{-92} +3 q^{-93} - q^{-94} +2 q^{-95} -2 q^{-97} + q^{-98} </math>|J5=<math> q^{-10} - q^{-11} + q^{-15} +3 q^{-16} -3 q^{-17} - q^{-18} -2 q^{-20} +2 q^{-21} +9 q^{-22} -4 q^{-23} -3 q^{-24} -2 q^{-25} -7 q^{-26} + q^{-27} +19 q^{-28} -4 q^{-30} -8 q^{-31} -19 q^{-32} -3 q^{-33} +31 q^{-34} +16 q^{-35} +5 q^{-36} -17 q^{-37} -46 q^{-38} -24 q^{-39} +39 q^{-40} +48 q^{-41} +45 q^{-42} -7 q^{-43} -90 q^{-44} -88 q^{-45} +8 q^{-46} +88 q^{-47} +129 q^{-48} +62 q^{-49} -112 q^{-50} -194 q^{-51} -97 q^{-52} +85 q^{-53} +238 q^{-54} +190 q^{-55} -65 q^{-56} -286 q^{-57} -254 q^{-58} +17 q^{-59} +305 q^{-60} +333 q^{-61} +27 q^{-62} -317 q^{-63} -379 q^{-64} -80 q^{-65} +314 q^{-66} +420 q^{-67} +114 q^{-68} -303 q^{-69} -434 q^{-70} -147 q^{-71} +288 q^{-72} +446 q^{-73} +162 q^{-74} -272 q^{-75} -442 q^{-76} -174 q^{-77} +254 q^{-78} +428 q^{-79} +186 q^{-80} -232 q^{-81} -414 q^{-82} -187 q^{-83} +201 q^{-84} +383 q^{-85} +199 q^{-86} -163 q^{-87} -352 q^{-88} -201 q^{-89} +119 q^{-90} +303 q^{-91} +203 q^{-92} -66 q^{-93} -251 q^{-94} -196 q^{-95} +18 q^{-96} +187 q^{-97} +176 q^{-98} +26 q^{-99} -119 q^{-100} -148 q^{-101} -55 q^{-102} +58 q^{-103} +106 q^{-104} +66 q^{-105} -6 q^{-106} -57 q^{-107} -62 q^{-108} -29 q^{-109} +15 q^{-110} +43 q^{-111} +39 q^{-112} +21 q^{-113} -14 q^{-114} -43 q^{-115} -35 q^{-116} -7 q^{-117} +24 q^{-118} +40 q^{-119} +23 q^{-120} -10 q^{-121} -30 q^{-122} -27 q^{-123} -5 q^{-124} +22 q^{-125} +20 q^{-126} +8 q^{-127} -5 q^{-128} -16 q^{-129} -10 q^{-130} +4 q^{-131} +8 q^{-132} +2 q^{-133} +3 q^{-134} -2 q^{-135} -6 q^{-136} + q^{-137} +3 q^{-138} - q^{-139} + q^{-141} -2 q^{-142} +2 q^{-144} - q^{-145} </math>|J6=Not Available|J7=Not Available}}
coloured_jones_4 = <math> q^{-8} - q^{-9} +4 q^{-13} -3 q^{-14} - q^{-16} -3 q^{-17} +10 q^{-18} -4 q^{-19} +2 q^{-20} -4 q^{-21} -11 q^{-22} +16 q^{-23} -3 q^{-24} +11 q^{-25} -5 q^{-26} -27 q^{-27} +15 q^{-28} -7 q^{-29} +33 q^{-30} +10 q^{-31} -46 q^{-32} -2 q^{-33} -30 q^{-34} +60 q^{-35} +49 q^{-36} -49 q^{-37} -24 q^{-38} -80 q^{-39} +73 q^{-40} +97 q^{-41} -31 q^{-42} -34 q^{-43} -132 q^{-44} +67 q^{-45} +126 q^{-46} -9 q^{-47} -25 q^{-48} -163 q^{-49} +53 q^{-50} +133 q^{-51} +3 q^{-52} -10 q^{-53} -168 q^{-54} +39 q^{-55} +119 q^{-56} +10 q^{-57} +10 q^{-58} -154 q^{-59} +19 q^{-60} +90 q^{-61} +16 q^{-62} +35 q^{-63} -124 q^{-64} -4 q^{-65} +47 q^{-66} +16 q^{-67} +62 q^{-68} -81 q^{-69} -18 q^{-70} +3 q^{-71} +2 q^{-72} +73 q^{-73} -34 q^{-74} -12 q^{-75} -24 q^{-76} -19 q^{-77} +58 q^{-78} -4 q^{-79} +5 q^{-80} -22 q^{-81} -28 q^{-82} +29 q^{-83} +3 q^{-84} +13 q^{-85} -8 q^{-86} -19 q^{-87} +10 q^{-88} - q^{-89} +7 q^{-90} -7 q^{-92} +3 q^{-93} - q^{-94} +2 q^{-95} -2 q^{-97} + q^{-98} </math> |

coloured_jones_5 = <math> q^{-10} - q^{-11} + q^{-15} +3 q^{-16} -3 q^{-17} - q^{-18} -2 q^{-20} +2 q^{-21} +9 q^{-22} -4 q^{-23} -3 q^{-24} -2 q^{-25} -7 q^{-26} + q^{-27} +19 q^{-28} -4 q^{-30} -8 q^{-31} -19 q^{-32} -3 q^{-33} +31 q^{-34} +16 q^{-35} +5 q^{-36} -17 q^{-37} -46 q^{-38} -24 q^{-39} +39 q^{-40} +48 q^{-41} +45 q^{-42} -7 q^{-43} -90 q^{-44} -88 q^{-45} +8 q^{-46} +88 q^{-47} +129 q^{-48} +62 q^{-49} -112 q^{-50} -194 q^{-51} -97 q^{-52} +85 q^{-53} +238 q^{-54} +190 q^{-55} -65 q^{-56} -286 q^{-57} -254 q^{-58} +17 q^{-59} +305 q^{-60} +333 q^{-61} +27 q^{-62} -317 q^{-63} -379 q^{-64} -80 q^{-65} +314 q^{-66} +420 q^{-67} +114 q^{-68} -303 q^{-69} -434 q^{-70} -147 q^{-71} +288 q^{-72} +446 q^{-73} +162 q^{-74} -272 q^{-75} -442 q^{-76} -174 q^{-77} +254 q^{-78} +428 q^{-79} +186 q^{-80} -232 q^{-81} -414 q^{-82} -187 q^{-83} +201 q^{-84} +383 q^{-85} +199 q^{-86} -163 q^{-87} -352 q^{-88} -201 q^{-89} +119 q^{-90} +303 q^{-91} +203 q^{-92} -66 q^{-93} -251 q^{-94} -196 q^{-95} +18 q^{-96} +187 q^{-97} +176 q^{-98} +26 q^{-99} -119 q^{-100} -148 q^{-101} -55 q^{-102} +58 q^{-103} +106 q^{-104} +66 q^{-105} -6 q^{-106} -57 q^{-107} -62 q^{-108} -29 q^{-109} +15 q^{-110} +43 q^{-111} +39 q^{-112} +21 q^{-113} -14 q^{-114} -43 q^{-115} -35 q^{-116} -7 q^{-117} +24 q^{-118} +40 q^{-119} +23 q^{-120} -10 q^{-121} -30 q^{-122} -27 q^{-123} -5 q^{-124} +22 q^{-125} +20 q^{-126} +8 q^{-127} -5 q^{-128} -16 q^{-129} -10 q^{-130} +4 q^{-131} +8 q^{-132} +2 q^{-133} +3 q^{-134} -2 q^{-135} -6 q^{-136} + q^{-137} +3 q^{-138} - q^{-139} + q^{-141} -2 q^{-142} +2 q^{-144} - q^{-145} </math> |
{{Computer Talk Header}}
coloured_jones_6 = |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 16, 6, 17], X[7, 18, 8, 1],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 16, 6, 17], X[7, 18, 8, 1],
X[17, 6, 18, 7], X[9, 14, 10, 15], X[13, 10, 14, 11],
X[17, 6, 18, 7], X[9, 14, 10, 15], X[13, 10, 14, 11],
X[15, 8, 16, 9], X[11, 2, 12, 3]]</nowiki></pre></td></tr>
X[15, 8, 16, 9], X[11, 2, 12, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 7]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 12, 16, 18, 14, 2, 10, 8, 6]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 12, 16, 18, 14, 2, 10, 8, 6]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -1, -2, 1, -2, -3, 2, -3, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -1, -2, 1, -2, -3, 2, -3, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 7]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_7_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 7]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 7]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 7 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 7]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_7_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 7]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 7]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 7 2
9 + -- - - - 7 t + 3 t
9 + -- - - - 7 t + 3 t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 7]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 7]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
1 + 5 z + 3 z</nowiki></pre></td></tr>
1 + 5 z + 3 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 7]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 7]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 7]], KnotSignature[Knot[9, 7]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{29, -4}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 7]], KnotSignature[Knot[9, 7]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 7]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{29, -4}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -11 2 3 4 5 5 4 3 -3 -2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 7]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -11 2 3 4 5 5 4 3 -3 -2
-q + --- - -- + -- - -- + -- - -- + -- - q + q
-q + --- - -- + -- - -- + -- - -- + -- - q + q
10 9 8 7 6 5 4
10 9 8 7 6 5 4
q q q q q q q</nowiki></pre></td></tr>
q q q q q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 7]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 7]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 7]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -34 -28 -26 -18 -16 -12 2 -6

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 7]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -34 -28 -26 -18 -16 -12 2 -6
-q - q + q - q + q + q + --- + q
-q - q + q - q + q + q + --- + q
10
10
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 7]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 7]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 4 2 6 2 8 2 10 2 4 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 4 2 6 2 8 2 10 2 4 4
2 a - a + a - a + 3 a z + a z + 2 a z - a z + a z +
2 a - a + a - a + 3 a z + a z + 2 a z - a z + a z +
6 4 8 4
6 4 8 4
a z + a z</nowiki></pre></td></tr>
a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 7]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 7]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 5 7 9 11 13
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 5 7 9 11 13
2 a + a + a + a - a z - a z - 3 a z - 2 a z + a z -
2 a + a + a + a - a z - a z - 3 a z - 2 a z + a z -
Line 168: Line 117:
10 8
10 8
a z</nowiki></pre></td></tr>
a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 7]], Vassiliev[3][Knot[9, 7]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 7]], Vassiliev[3][Knot[9, 7]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, -12}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, -12}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 7]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 -3 1 1 1 2 1 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 7]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 -3 1 1 1 2 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
23 9 21 8 19 8 19 7 17 7 17 6
23 9 21 8 19 8 19 7 17 7 17 6
Line 187: Line 134:
7 2 5
7 2 5
q t q t</nowiki></pre></td></tr>
q t q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 7], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 7], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -31 2 5 6 3 12 7 9 18 6 16
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -31 2 5 6 3 12 7 9 18 6 16
q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- +
q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- +
30 28 27 26 25 24 23 22 21 20
30 28 27 26 25 24 23 22 21 20
Line 201: Line 147:
-4
-4
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:41, 30 August 2005

9 6.gif

9_6

9 8.gif

9_8

9 7.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 7 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X5,16,6,17 X7,18,8,1 X17,6,18,7 X9,14,10,15 X13,10,14,11 X15,8,16,9 X11,2,12,3
Gauss code -1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4
Dowker-Thistlethwaite code 4 12 16 18 14 2 10 8 6
Conway Notation [342]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

9 7 ML.gif 9 7 AP.gif
[{11, 2}, {1, 9}, {8, 10}, {9, 11}, {10, 7}, {6, 8}, {7, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 1}]

[edit Notes on presentations of 9 7]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 8.01486
A-Polynomial See Data:9 7/A-polynomial

[edit Notes for 9 7's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 7's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 29, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (5, -12)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        110
-7       2  2
-9      21  -1
-11     32   1
-13    22    0
-15   23     -1
-17  12      1
-19 12       -1
-21 1        1
-231         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials