9 7
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3,12,4,13 X5,16,6,17 X7,18,8,1 X17,6,18,7 X9,14,10,15 X13,10,14,11 X15,8,16,9 X11,2,12,3 |
| Gauss code | -1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4 |
| Dowker-Thistlethwaite code | 4 12 16 18 14 2 10 8 6 |
| Conway Notation | [342] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{11, 2}, {1, 9}, {8, 10}, {9, 11}, {10, 7}, {6, 8}, {7, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 1}] |
[edit Notes on presentations of 9 7]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 7"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X5,16,6,17 X7,18,8,1 X17,6,18,7 X9,14,10,15 X13,10,14,11 X15,8,16,9 X11,2,12,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 16 18 14 2 10 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[342] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 2}, {1, 9}, {8, 10}, {9, 11}, {10, 7}, {6, 8}, {7, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | |
| Conway polynomial | |
| 2nd Alexander ideal (db, data sources) | |
| Determinant and Signature | { 29, -4 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{13}-3 z^3 a^{13}+z a^{13}+2 z^6 a^{12}-6 z^4 a^{12}+3 z^2 a^{12}+2 z^7 a^{11}-6 z^5 a^{11}+5 z^3 a^{11}-2 z a^{11}+z^8 a^{10}-2 z^6 a^{10}+2 z^4 a^{10}-2 z^2 a^{10}+a^{10}+3 z^7 a^9-9 z^5 a^9+11 z^3 a^9-3 z a^9+z^8 a^8-3 z^6 a^8+7 z^4 a^8-4 z^2 a^8+a^8+z^7 a^7-z^5 a^7+2 z^3 a^7-z a^7+z^6 a^6-2 z^2 a^6+a^6+z^5 a^5-z^3 a^5-z a^5+z^4 a^4-3 z^2 a^4+2 a^4} |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 7"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 29, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{13}-3 z^3 a^{13}+z a^{13}+2 z^6 a^{12}-6 z^4 a^{12}+3 z^2 a^{12}+2 z^7 a^{11}-6 z^5 a^{11}+5 z^3 a^{11}-2 z a^{11}+z^8 a^{10}-2 z^6 a^{10}+2 z^4 a^{10}-2 z^2 a^{10}+a^{10}+3 z^7 a^9-9 z^5 a^9+11 z^3 a^9-3 z a^9+z^8 a^8-3 z^6 a^8+7 z^4 a^8-4 z^2 a^8+a^8+z^7 a^7-z^5 a^7+2 z^3 a^7-z a^7+z^6 a^6-2 z^2 a^6+a^6+z^5 a^5-z^3 a^5-z a^5+z^4 a^4-3 z^2 a^4+2 a^4} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 7"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (5, -12) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} - q^{-5} +3 q^{-7} -3 q^{-8} +7 q^{-10} -9 q^{-11} +14 q^{-13} -16 q^{-14} -2 q^{-15} +21 q^{-16} -19 q^{-17} -4 q^{-18} +22 q^{-19} -16 q^{-20} -6 q^{-21} +18 q^{-22} -9 q^{-23} -7 q^{-24} +12 q^{-25} -3 q^{-26} -6 q^{-27} +5 q^{-28} -2 q^{-30} + q^{-31} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-7} +3 q^{-10} -2 q^{-11} - q^{-13} +4 q^{-14} -3 q^{-15} + q^{-16} +3 q^{-18} -9 q^{-19} +4 q^{-20} +9 q^{-21} + q^{-22} -21 q^{-23} +26 q^{-25} +5 q^{-26} -35 q^{-27} -8 q^{-28} +38 q^{-29} +14 q^{-30} -41 q^{-31} -17 q^{-32} +41 q^{-33} +19 q^{-34} -37 q^{-35} -23 q^{-36} +33 q^{-37} +24 q^{-38} -26 q^{-39} -26 q^{-40} +19 q^{-41} +27 q^{-42} -11 q^{-43} -26 q^{-44} +3 q^{-45} +24 q^{-46} +3 q^{-47} -20 q^{-48} -6 q^{-49} +13 q^{-50} +9 q^{-51} -9 q^{-52} -7 q^{-53} +4 q^{-54} +5 q^{-55} -2 q^{-56} -2 q^{-57} +2 q^{-59} - q^{-60} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-8} - q^{-9} +4 q^{-13} -3 q^{-14} - q^{-16} -3 q^{-17} +10 q^{-18} -4 q^{-19} +2 q^{-20} -4 q^{-21} -11 q^{-22} +16 q^{-23} -3 q^{-24} +11 q^{-25} -5 q^{-26} -27 q^{-27} +15 q^{-28} -7 q^{-29} +33 q^{-30} +10 q^{-31} -46 q^{-32} -2 q^{-33} -30 q^{-34} +60 q^{-35} +49 q^{-36} -49 q^{-37} -24 q^{-38} -80 q^{-39} +73 q^{-40} +97 q^{-41} -31 q^{-42} -34 q^{-43} -132 q^{-44} +67 q^{-45} +126 q^{-46} -9 q^{-47} -25 q^{-48} -163 q^{-49} +53 q^{-50} +133 q^{-51} +3 q^{-52} -10 q^{-53} -168 q^{-54} +39 q^{-55} +119 q^{-56} +10 q^{-57} +10 q^{-58} -154 q^{-59} +19 q^{-60} +90 q^{-61} +16 q^{-62} +35 q^{-63} -124 q^{-64} -4 q^{-65} +47 q^{-66} +16 q^{-67} +62 q^{-68} -81 q^{-69} -18 q^{-70} +3 q^{-71} +2 q^{-72} +73 q^{-73} -34 q^{-74} -12 q^{-75} -24 q^{-76} -19 q^{-77} +58 q^{-78} -4 q^{-79} +5 q^{-80} -22 q^{-81} -28 q^{-82} +29 q^{-83} +3 q^{-84} +13 q^{-85} -8 q^{-86} -19 q^{-87} +10 q^{-88} - q^{-89} +7 q^{-90} -7 q^{-92} +3 q^{-93} - q^{-94} +2 q^{-95} -2 q^{-97} + q^{-98} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} - q^{-11} + q^{-15} +3 q^{-16} -3 q^{-17} - q^{-18} -2 q^{-20} +2 q^{-21} +9 q^{-22} -4 q^{-23} -3 q^{-24} -2 q^{-25} -7 q^{-26} + q^{-27} +19 q^{-28} -4 q^{-30} -8 q^{-31} -19 q^{-32} -3 q^{-33} +31 q^{-34} +16 q^{-35} +5 q^{-36} -17 q^{-37} -46 q^{-38} -24 q^{-39} +39 q^{-40} +48 q^{-41} +45 q^{-42} -7 q^{-43} -90 q^{-44} -88 q^{-45} +8 q^{-46} +88 q^{-47} +129 q^{-48} +62 q^{-49} -112 q^{-50} -194 q^{-51} -97 q^{-52} +85 q^{-53} +238 q^{-54} +190 q^{-55} -65 q^{-56} -286 q^{-57} -254 q^{-58} +17 q^{-59} +305 q^{-60} +333 q^{-61} +27 q^{-62} -317 q^{-63} -379 q^{-64} -80 q^{-65} +314 q^{-66} +420 q^{-67} +114 q^{-68} -303 q^{-69} -434 q^{-70} -147 q^{-71} +288 q^{-72} +446 q^{-73} +162 q^{-74} -272 q^{-75} -442 q^{-76} -174 q^{-77} +254 q^{-78} +428 q^{-79} +186 q^{-80} -232 q^{-81} -414 q^{-82} -187 q^{-83} +201 q^{-84} +383 q^{-85} +199 q^{-86} -163 q^{-87} -352 q^{-88} -201 q^{-89} +119 q^{-90} +303 q^{-91} +203 q^{-92} -66 q^{-93} -251 q^{-94} -196 q^{-95} +18 q^{-96} +187 q^{-97} +176 q^{-98} +26 q^{-99} -119 q^{-100} -148 q^{-101} -55 q^{-102} +58 q^{-103} +106 q^{-104} +66 q^{-105} -6 q^{-106} -57 q^{-107} -62 q^{-108} -29 q^{-109} +15 q^{-110} +43 q^{-111} +39 q^{-112} +21 q^{-113} -14 q^{-114} -43 q^{-115} -35 q^{-116} -7 q^{-117} +24 q^{-118} +40 q^{-119} +23 q^{-120} -10 q^{-121} -30 q^{-122} -27 q^{-123} -5 q^{-124} +22 q^{-125} +20 q^{-126} +8 q^{-127} -5 q^{-128} -16 q^{-129} -10 q^{-130} +4 q^{-131} +8 q^{-132} +2 q^{-133} +3 q^{-134} -2 q^{-135} -6 q^{-136} + q^{-137} +3 q^{-138} - q^{-139} + q^{-141} -2 q^{-142} +2 q^{-144} - q^{-145} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




