9 9: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- --> |
|||
k = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,9,-7,1,-3,5,-4,6,-8,2,-9,7,-6,3,-5,4/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=9|k=9|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,9,-7,1,-3,5,-4,6,-8,2,-9,7,-6,3,-5,4/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr> |
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr> |
||
Line 71: | Line 35: | ||
<tr align=center><td>-23</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-23</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-25</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-25</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math> q^{-6} - q^{-7} +4 q^{-9} -3 q^{-10} -4 q^{-11} +10 q^{-12} -4 q^{-13} -11 q^{-14} +17 q^{-15} -2 q^{-16} -19 q^{-17} +21 q^{-18} +2 q^{-19} -25 q^{-20} +20 q^{-21} +6 q^{-22} -25 q^{-23} +17 q^{-24} +6 q^{-25} -18 q^{-26} +10 q^{-27} +3 q^{-28} -8 q^{-29} +4 q^{-30} + q^{-31} -2 q^{-32} + q^{-33} </math> | |
|||
coloured_jones_3 = <math> q^{-9} - q^{-10} + q^{-12} +3 q^{-13} -3 q^{-14} -3 q^{-15} + q^{-16} +10 q^{-17} -3 q^{-18} -11 q^{-19} -5 q^{-20} +20 q^{-21} +6 q^{-22} -18 q^{-23} -18 q^{-24} +24 q^{-25} +22 q^{-26} -19 q^{-27} -33 q^{-28} +19 q^{-29} +36 q^{-30} -11 q^{-31} -45 q^{-32} +8 q^{-33} +46 q^{-34} + q^{-35} -51 q^{-36} -7 q^{-37} +51 q^{-38} +15 q^{-39} -53 q^{-40} -18 q^{-41} +48 q^{-42} +22 q^{-43} -44 q^{-44} -21 q^{-45} +37 q^{-46} +18 q^{-47} -28 q^{-48} -15 q^{-49} +23 q^{-50} +7 q^{-51} -13 q^{-52} -6 q^{-53} +11 q^{-54} + q^{-55} -6 q^{-56} - q^{-57} +5 q^{-58} - q^{-59} - q^{-60} - q^{-61} +2 q^{-62} - q^{-63} </math> | |
|||
{{Display Coloured Jones|J2=<math> q^{-6} - q^{-7} +4 q^{-9} -3 q^{-10} -4 q^{-11} +10 q^{-12} -4 q^{-13} -11 q^{-14} +17 q^{-15} -2 q^{-16} -19 q^{-17} +21 q^{-18} +2 q^{-19} -25 q^{-20} +20 q^{-21} +6 q^{-22} -25 q^{-23} +17 q^{-24} +6 q^{-25} -18 q^{-26} +10 q^{-27} +3 q^{-28} -8 q^{-29} +4 q^{-30} + q^{-31} -2 q^{-32} + q^{-33} </math>|J3=<math> q^{-9} - q^{-10} + q^{-12} +3 q^{-13} -3 q^{-14} -3 q^{-15} + q^{-16} +10 q^{-17} -3 q^{-18} -11 q^{-19} -5 q^{-20} +20 q^{-21} +6 q^{-22} -18 q^{-23} -18 q^{-24} +24 q^{-25} +22 q^{-26} -19 q^{-27} -33 q^{-28} +19 q^{-29} +36 q^{-30} -11 q^{-31} -45 q^{-32} +8 q^{-33} +46 q^{-34} + q^{-35} -51 q^{-36} -7 q^{-37} +51 q^{-38} +15 q^{-39} -53 q^{-40} -18 q^{-41} +48 q^{-42} +22 q^{-43} -44 q^{-44} -21 q^{-45} +37 q^{-46} +18 q^{-47} -28 q^{-48} -15 q^{-49} +23 q^{-50} +7 q^{-51} -13 q^{-52} -6 q^{-53} +11 q^{-54} + q^{-55} -6 q^{-56} - q^{-57} +5 q^{-58} - q^{-59} - q^{-60} - q^{-61} +2 q^{-62} - q^{-63} </math>|J4=<math> q^{-12} - q^{-13} + q^{-15} +3 q^{-17} -4 q^{-18} -2 q^{-19} +3 q^{-20} +11 q^{-22} -8 q^{-23} -10 q^{-24} - q^{-25} -2 q^{-26} +30 q^{-27} -3 q^{-28} -16 q^{-29} -16 q^{-30} -21 q^{-31} +51 q^{-32} +15 q^{-33} -3 q^{-34} -28 q^{-35} -61 q^{-36} +54 q^{-37} +28 q^{-38} +31 q^{-39} -17 q^{-40} -102 q^{-41} +38 q^{-42} +17 q^{-43} +65 q^{-44} +19 q^{-45} -121 q^{-46} +15 q^{-47} -17 q^{-48} +85 q^{-49} +63 q^{-50} -119 q^{-51} - q^{-52} -61 q^{-53} +91 q^{-54} +103 q^{-55} -103 q^{-56} -16 q^{-57} -104 q^{-58} +94 q^{-59} +137 q^{-60} -82 q^{-61} -30 q^{-62} -138 q^{-63} +87 q^{-64} +158 q^{-65} -54 q^{-66} -32 q^{-67} -157 q^{-68} +65 q^{-69} +152 q^{-70} -27 q^{-71} -12 q^{-72} -144 q^{-73} +33 q^{-74} +113 q^{-75} -14 q^{-76} +14 q^{-77} -100 q^{-78} +12 q^{-79} +60 q^{-80} -17 q^{-81} +27 q^{-82} -50 q^{-83} +6 q^{-84} +24 q^{-85} -20 q^{-86} +21 q^{-87} -19 q^{-88} +7 q^{-89} +8 q^{-90} -16 q^{-91} +11 q^{-92} -6 q^{-93} +4 q^{-94} +3 q^{-95} -7 q^{-96} +4 q^{-97} -2 q^{-98} + q^{-99} + q^{-100} -2 q^{-101} + q^{-102} </math>|J5=<math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} +5 q^{-27} -7 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +8 q^{-32} +18 q^{-33} -4 q^{-34} -23 q^{-35} -20 q^{-36} -7 q^{-37} +12 q^{-38} +46 q^{-39} +25 q^{-40} -15 q^{-41} -40 q^{-42} -49 q^{-43} -22 q^{-44} +55 q^{-45} +70 q^{-46} +33 q^{-47} -17 q^{-48} -79 q^{-49} -89 q^{-50} +4 q^{-51} +77 q^{-52} +90 q^{-53} +56 q^{-54} -45 q^{-55} -125 q^{-56} -80 q^{-57} +10 q^{-58} +92 q^{-59} +126 q^{-60} +47 q^{-61} -80 q^{-62} -128 q^{-63} -95 q^{-64} +15 q^{-65} +139 q^{-66} +143 q^{-67} +26 q^{-68} -104 q^{-69} -178 q^{-70} -103 q^{-71} +87 q^{-72} +201 q^{-73} +146 q^{-74} -29 q^{-75} -218 q^{-76} -215 q^{-77} +3 q^{-78} +225 q^{-79} +253 q^{-80} +47 q^{-81} -231 q^{-82} -308 q^{-83} -74 q^{-84} +240 q^{-85} +340 q^{-86} +115 q^{-87} -246 q^{-88} -388 q^{-89} -139 q^{-90} +251 q^{-91} +416 q^{-92} +181 q^{-93} -248 q^{-94} -453 q^{-95} -207 q^{-96} +233 q^{-97} +458 q^{-98} +249 q^{-99} -200 q^{-100} -458 q^{-101} -275 q^{-102} +158 q^{-103} +424 q^{-104} +288 q^{-105} -98 q^{-106} -372 q^{-107} -288 q^{-108} +48 q^{-109} +305 q^{-110} +254 q^{-111} -3 q^{-112} -218 q^{-113} -221 q^{-114} -29 q^{-115} +160 q^{-116} +157 q^{-117} +37 q^{-118} -83 q^{-119} -118 q^{-120} -40 q^{-121} +53 q^{-122} +65 q^{-123} +29 q^{-124} -15 q^{-125} -40 q^{-126} -20 q^{-127} +8 q^{-128} +11 q^{-129} +13 q^{-130} +6 q^{-131} -9 q^{-132} -5 q^{-133} -5 q^{-135} + q^{-136} +10 q^{-137} -4 q^{-138} - q^{-139} +3 q^{-140} -5 q^{-141} - q^{-142} +5 q^{-143} -2 q^{-144} - q^{-145} +2 q^{-146} - q^{-147} - q^{-148} +2 q^{-149} - q^{-150} </math>|J6=<math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -5 q^{-31} +6 q^{-32} -8 q^{-33} -10 q^{-34} +5 q^{-35} +7 q^{-36} +12 q^{-37} -4 q^{-38} +18 q^{-39} -15 q^{-40} -31 q^{-41} -11 q^{-42} +24 q^{-44} +8 q^{-45} +61 q^{-46} +4 q^{-47} -42 q^{-48} -48 q^{-49} -45 q^{-50} -7 q^{-51} -9 q^{-52} +124 q^{-53} +70 q^{-54} +16 q^{-55} -43 q^{-56} -89 q^{-57} -93 q^{-58} -120 q^{-59} +117 q^{-60} +113 q^{-61} +129 q^{-62} +64 q^{-63} -18 q^{-64} -129 q^{-65} -276 q^{-66} -5 q^{-67} +14 q^{-68} +156 q^{-69} +182 q^{-70} +185 q^{-71} +5 q^{-72} -308 q^{-73} -113 q^{-74} -206 q^{-75} -13 q^{-76} +126 q^{-77} +355 q^{-78} +253 q^{-79} -124 q^{-80} -26 q^{-81} -357 q^{-82} -291 q^{-83} -164 q^{-84} +313 q^{-85} +420 q^{-86} +167 q^{-87} +284 q^{-88} -282 q^{-89} -481 q^{-90} -558 q^{-91} +50 q^{-92} +373 q^{-93} +381 q^{-94} +683 q^{-95} +5 q^{-96} -478 q^{-97} -885 q^{-98} -304 q^{-99} +139 q^{-100} +440 q^{-101} +1024 q^{-102} +374 q^{-103} -325 q^{-104} -1077 q^{-105} -618 q^{-106} -162 q^{-107} +388 q^{-108} +1255 q^{-109} +707 q^{-110} -133 q^{-111} -1175 q^{-112} -853 q^{-113} -425 q^{-114} +327 q^{-115} +1413 q^{-116} +964 q^{-117} +11 q^{-118} -1256 q^{-119} -1040 q^{-120} -623 q^{-121} +315 q^{-122} +1556 q^{-123} +1178 q^{-124} +109 q^{-125} -1348 q^{-126} -1223 q^{-127} -800 q^{-128} +306 q^{-129} +1676 q^{-130} +1385 q^{-131} +244 q^{-132} -1359 q^{-133} -1377 q^{-134} -1002 q^{-135} +183 q^{-136} +1662 q^{-137} +1543 q^{-138} +467 q^{-139} -1164 q^{-140} -1371 q^{-141} -1168 q^{-142} -86 q^{-143} +1395 q^{-144} +1506 q^{-145} +681 q^{-146} -767 q^{-147} -1099 q^{-148} -1139 q^{-149} -358 q^{-150} +923 q^{-151} +1189 q^{-152} +713 q^{-153} -353 q^{-154} -653 q^{-155} -860 q^{-156} -451 q^{-157} +465 q^{-158} +722 q^{-159} +528 q^{-160} -103 q^{-161} -256 q^{-162} -483 q^{-163} -357 q^{-164} +181 q^{-165} +333 q^{-166} +280 q^{-167} -25 q^{-168} -37 q^{-169} -199 q^{-170} -207 q^{-171} +62 q^{-172} +113 q^{-173} +110 q^{-174} -18 q^{-175} +36 q^{-176} -58 q^{-177} -102 q^{-178} +25 q^{-179} +25 q^{-180} +33 q^{-181} -17 q^{-182} +38 q^{-183} -8 q^{-184} -46 q^{-185} +12 q^{-186} + q^{-187} +7 q^{-188} -12 q^{-189} +22 q^{-190} +2 q^{-191} -18 q^{-192} +7 q^{-193} -2 q^{-194} +2 q^{-195} -7 q^{-196} +8 q^{-197} +2 q^{-198} -7 q^{-199} +4 q^{-200} - q^{-201} + q^{-202} -2 q^{-203} + q^{-204} + q^{-205} -2 q^{-206} + q^{-207} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math> q^{-12} - q^{-13} + q^{-15} +3 q^{-17} -4 q^{-18} -2 q^{-19} +3 q^{-20} +11 q^{-22} -8 q^{-23} -10 q^{-24} - q^{-25} -2 q^{-26} +30 q^{-27} -3 q^{-28} -16 q^{-29} -16 q^{-30} -21 q^{-31} +51 q^{-32} +15 q^{-33} -3 q^{-34} -28 q^{-35} -61 q^{-36} +54 q^{-37} +28 q^{-38} +31 q^{-39} -17 q^{-40} -102 q^{-41} +38 q^{-42} +17 q^{-43} +65 q^{-44} +19 q^{-45} -121 q^{-46} +15 q^{-47} -17 q^{-48} +85 q^{-49} +63 q^{-50} -119 q^{-51} - q^{-52} -61 q^{-53} +91 q^{-54} +103 q^{-55} -103 q^{-56} -16 q^{-57} -104 q^{-58} +94 q^{-59} +137 q^{-60} -82 q^{-61} -30 q^{-62} -138 q^{-63} +87 q^{-64} +158 q^{-65} -54 q^{-66} -32 q^{-67} -157 q^{-68} +65 q^{-69} +152 q^{-70} -27 q^{-71} -12 q^{-72} -144 q^{-73} +33 q^{-74} +113 q^{-75} -14 q^{-76} +14 q^{-77} -100 q^{-78} +12 q^{-79} +60 q^{-80} -17 q^{-81} +27 q^{-82} -50 q^{-83} +6 q^{-84} +24 q^{-85} -20 q^{-86} +21 q^{-87} -19 q^{-88} +7 q^{-89} +8 q^{-90} -16 q^{-91} +11 q^{-92} -6 q^{-93} +4 q^{-94} +3 q^{-95} -7 q^{-96} +4 q^{-97} -2 q^{-98} + q^{-99} + q^{-100} -2 q^{-101} + q^{-102} </math> | |
|||
coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} +5 q^{-27} -7 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +8 q^{-32} +18 q^{-33} -4 q^{-34} -23 q^{-35} -20 q^{-36} -7 q^{-37} +12 q^{-38} +46 q^{-39} +25 q^{-40} -15 q^{-41} -40 q^{-42} -49 q^{-43} -22 q^{-44} +55 q^{-45} +70 q^{-46} +33 q^{-47} -17 q^{-48} -79 q^{-49} -89 q^{-50} +4 q^{-51} +77 q^{-52} +90 q^{-53} +56 q^{-54} -45 q^{-55} -125 q^{-56} -80 q^{-57} +10 q^{-58} +92 q^{-59} +126 q^{-60} +47 q^{-61} -80 q^{-62} -128 q^{-63} -95 q^{-64} +15 q^{-65} +139 q^{-66} +143 q^{-67} +26 q^{-68} -104 q^{-69} -178 q^{-70} -103 q^{-71} +87 q^{-72} +201 q^{-73} +146 q^{-74} -29 q^{-75} -218 q^{-76} -215 q^{-77} +3 q^{-78} +225 q^{-79} +253 q^{-80} +47 q^{-81} -231 q^{-82} -308 q^{-83} -74 q^{-84} +240 q^{-85} +340 q^{-86} +115 q^{-87} -246 q^{-88} -388 q^{-89} -139 q^{-90} +251 q^{-91} +416 q^{-92} +181 q^{-93} -248 q^{-94} -453 q^{-95} -207 q^{-96} +233 q^{-97} +458 q^{-98} +249 q^{-99} -200 q^{-100} -458 q^{-101} -275 q^{-102} +158 q^{-103} +424 q^{-104} +288 q^{-105} -98 q^{-106} -372 q^{-107} -288 q^{-108} +48 q^{-109} +305 q^{-110} +254 q^{-111} -3 q^{-112} -218 q^{-113} -221 q^{-114} -29 q^{-115} +160 q^{-116} +157 q^{-117} +37 q^{-118} -83 q^{-119} -118 q^{-120} -40 q^{-121} +53 q^{-122} +65 q^{-123} +29 q^{-124} -15 q^{-125} -40 q^{-126} -20 q^{-127} +8 q^{-128} +11 q^{-129} +13 q^{-130} +6 q^{-131} -9 q^{-132} -5 q^{-133} -5 q^{-135} + q^{-136} +10 q^{-137} -4 q^{-138} - q^{-139} +3 q^{-140} -5 q^{-141} - q^{-142} +5 q^{-143} -2 q^{-144} - q^{-145} +2 q^{-146} - q^{-147} - q^{-148} +2 q^{-149} - q^{-150} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -5 q^{-31} +6 q^{-32} -8 q^{-33} -10 q^{-34} +5 q^{-35} +7 q^{-36} +12 q^{-37} -4 q^{-38} +18 q^{-39} -15 q^{-40} -31 q^{-41} -11 q^{-42} +24 q^{-44} +8 q^{-45} +61 q^{-46} +4 q^{-47} -42 q^{-48} -48 q^{-49} -45 q^{-50} -7 q^{-51} -9 q^{-52} +124 q^{-53} +70 q^{-54} +16 q^{-55} -43 q^{-56} -89 q^{-57} -93 q^{-58} -120 q^{-59} +117 q^{-60} +113 q^{-61} +129 q^{-62} +64 q^{-63} -18 q^{-64} -129 q^{-65} -276 q^{-66} -5 q^{-67} +14 q^{-68} +156 q^{-69} +182 q^{-70} +185 q^{-71} +5 q^{-72} -308 q^{-73} -113 q^{-74} -206 q^{-75} -13 q^{-76} +126 q^{-77} +355 q^{-78} +253 q^{-79} -124 q^{-80} -26 q^{-81} -357 q^{-82} -291 q^{-83} -164 q^{-84} +313 q^{-85} +420 q^{-86} +167 q^{-87} +284 q^{-88} -282 q^{-89} -481 q^{-90} -558 q^{-91} +50 q^{-92} +373 q^{-93} +381 q^{-94} +683 q^{-95} +5 q^{-96} -478 q^{-97} -885 q^{-98} -304 q^{-99} +139 q^{-100} +440 q^{-101} +1024 q^{-102} +374 q^{-103} -325 q^{-104} -1077 q^{-105} -618 q^{-106} -162 q^{-107} +388 q^{-108} +1255 q^{-109} +707 q^{-110} -133 q^{-111} -1175 q^{-112} -853 q^{-113} -425 q^{-114} +327 q^{-115} +1413 q^{-116} +964 q^{-117} +11 q^{-118} -1256 q^{-119} -1040 q^{-120} -623 q^{-121} +315 q^{-122} +1556 q^{-123} +1178 q^{-124} +109 q^{-125} -1348 q^{-126} -1223 q^{-127} -800 q^{-128} +306 q^{-129} +1676 q^{-130} +1385 q^{-131} +244 q^{-132} -1359 q^{-133} -1377 q^{-134} -1002 q^{-135} +183 q^{-136} +1662 q^{-137} +1543 q^{-138} +467 q^{-139} -1164 q^{-140} -1371 q^{-141} -1168 q^{-142} -86 q^{-143} +1395 q^{-144} +1506 q^{-145} +681 q^{-146} -767 q^{-147} -1099 q^{-148} -1139 q^{-149} -358 q^{-150} +923 q^{-151} +1189 q^{-152} +713 q^{-153} -353 q^{-154} -653 q^{-155} -860 q^{-156} -451 q^{-157} +465 q^{-158} +722 q^{-159} +528 q^{-160} -103 q^{-161} -256 q^{-162} -483 q^{-163} -357 q^{-164} +181 q^{-165} +333 q^{-166} +280 q^{-167} -25 q^{-168} -37 q^{-169} -199 q^{-170} -207 q^{-171} +62 q^{-172} +113 q^{-173} +110 q^{-174} -18 q^{-175} +36 q^{-176} -58 q^{-177} -102 q^{-178} +25 q^{-179} +25 q^{-180} +33 q^{-181} -17 q^{-182} +38 q^{-183} -8 q^{-184} -46 q^{-185} +12 q^{-186} + q^{-187} +7 q^{-188} -12 q^{-189} +22 q^{-190} +2 q^{-191} -18 q^{-192} +7 q^{-193} -2 q^{-194} +2 q^{-195} -7 q^{-196} +8 q^{-197} +2 q^{-198} -7 q^{-199} +4 q^{-200} - q^{-201} + q^{-202} -2 q^{-203} + q^{-204} + q^{-205} -2 q^{-206} + q^{-207} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 16, 8, 17], X[9, 18, 10, 1], |
|||
X[17, 8, 18, 9], X[15, 10, 16, 11], X[5, 14, 6, 15], X[11, 2, 12, 3], |
X[17, 8, 18, 9], X[15, 10, 16, 11], X[5, 14, 6, 15], X[11, 2, 12, 3], |
||
X[13, 4, 14, 5]]</nowiki></pre></td></tr> |
X[13, 4, 14, 5]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 12, 14, 16, 18, 2, 4, 10, 8]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, -2, -2, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 9]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 9]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 3 |
|||
-7 + -- - -- + - + 6 t - 4 t + 2 t |
-7 + -- - -- + - + 6 t - 4 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 9]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 8 z + 8 z + 2 z</nowiki></pre></td></tr> |
1 + 8 z + 8 z + 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 9]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 9]], KnotSignature[Knot[9, 9]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{31, -6}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 9]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 4 5 5 5 4 3 -4 -3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 9]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 4 5 5 5 4 3 -4 -3 |
|||
-q + --- - --- + -- - -- + -- - -- + -- - q + q |
-q + --- - --- + -- - -- + -- - -- + -- - q + q |
||
11 10 9 8 7 6 5 |
11 10 9 8 7 6 5 |
||
q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 9]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 9]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 -32 -30 -26 2 -20 -18 2 -10 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 9]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 -32 -30 -26 2 -20 -18 2 -10 |
|||
-q - q - q - q + --- + q + q + --- + q |
-q - q - q - q + --- + q + q + --- + q |
||
24 14 |
24 14 |
||
q q</nowiki></pre></td></tr> |
q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 9]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 8 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 8 4 |
|||
2 a + a - 2 a + 7 a z + 4 a z - 3 a z + 5 a z + 4 a z - |
2 a + a - 2 a + 7 a z + 4 a z - 3 a z + 5 a z + 4 a z - |
||
10 4 6 6 8 6 |
10 4 6 6 8 6 |
||
a z + a z + a z</nowiki></pre></td></tr> |
a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 9]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 7 9 13 15 6 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 7 9 13 15 6 2 |
|||
-2 a + a + 2 a + a z - 2 a z + 2 a z - a z + 7 a z - |
-2 a + a + 2 a + a z - 2 a z + 2 a z - a z + 7 a z - |
||
Line 164: | Line 113: | ||
12 6 7 7 9 7 11 7 8 8 10 8 |
12 6 7 7 9 7 11 7 8 8 10 8 |
||
3 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
3 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 9]], Vassiliev[3][Knot[9, 9]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{8, -22}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 9]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 3 1 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 9]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 3 1 2 |
|||
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
||
25 9 23 8 21 8 21 7 19 7 19 6 |
25 9 23 8 21 8 21 7 19 7 19 6 |
||
Line 183: | Line 130: | ||
11 2 9 2 7 |
11 2 9 2 7 |
||
q t q t q t</nowiki></pre></td></tr> |
q t q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 9], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -33 2 -31 4 8 3 10 18 6 17 25 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -33 2 -31 4 8 3 10 18 6 17 25 |
|||
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + |
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + |
||
32 30 29 28 27 26 25 24 23 |
32 30 29 28 27 26 25 24 23 |
||
Line 199: | Line 145: | ||
11 10 9 |
11 10 9 |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:41, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X3,12,4,13 X7,16,8,17 X9,18,10,1 X17,8,18,9 X15,10,16,11 X5,14,6,15 X11,2,12,3 X13,4,14,5 |
Gauss code | -1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4 |
Dowker-Thistlethwaite code | 6 12 14 16 18 2 4 10 8 |
Conway Notation | [423] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{6, 1}, {11, 2}, {1, 3}, {2, 5}, {3, 7}, {4, 6}, {5, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 4}] |
[edit Notes on presentations of 9 9]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 9"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3,12,4,13 X7,16,8,17 X9,18,10,1 X17,8,18,9 X15,10,16,11 X5,14,6,15 X11,2,12,3 X13,4,14,5 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 12 14 16 18 2 4 10 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[423] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{6, 1}, {11, 2}, {1, 3}, {2, 5}, {3, 7}, {4, 6}, {5, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 4}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 9"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 31, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 9"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (8, -22) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 9 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|