9 9: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- -->
k = 9 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,9,-7,1,-3,5,-4,6,-8,2,-9,7,-6,3,-5,4/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=9|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,9,-7,1,-3,5,-4,6,-8,2,-9,7,-6,3,-5,4/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 10, width is 3.
braid_index = 3 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
Line 71: Line 35:
<tr align=center><td>-23</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-23</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-25</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-25</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-6} - q^{-7} +4 q^{-9} -3 q^{-10} -4 q^{-11} +10 q^{-12} -4 q^{-13} -11 q^{-14} +17 q^{-15} -2 q^{-16} -19 q^{-17} +21 q^{-18} +2 q^{-19} -25 q^{-20} +20 q^{-21} +6 q^{-22} -25 q^{-23} +17 q^{-24} +6 q^{-25} -18 q^{-26} +10 q^{-27} +3 q^{-28} -8 q^{-29} +4 q^{-30} + q^{-31} -2 q^{-32} + q^{-33} </math> |

coloured_jones_3 = <math> q^{-9} - q^{-10} + q^{-12} +3 q^{-13} -3 q^{-14} -3 q^{-15} + q^{-16} +10 q^{-17} -3 q^{-18} -11 q^{-19} -5 q^{-20} +20 q^{-21} +6 q^{-22} -18 q^{-23} -18 q^{-24} +24 q^{-25} +22 q^{-26} -19 q^{-27} -33 q^{-28} +19 q^{-29} +36 q^{-30} -11 q^{-31} -45 q^{-32} +8 q^{-33} +46 q^{-34} + q^{-35} -51 q^{-36} -7 q^{-37} +51 q^{-38} +15 q^{-39} -53 q^{-40} -18 q^{-41} +48 q^{-42} +22 q^{-43} -44 q^{-44} -21 q^{-45} +37 q^{-46} +18 q^{-47} -28 q^{-48} -15 q^{-49} +23 q^{-50} +7 q^{-51} -13 q^{-52} -6 q^{-53} +11 q^{-54} + q^{-55} -6 q^{-56} - q^{-57} +5 q^{-58} - q^{-59} - q^{-60} - q^{-61} +2 q^{-62} - q^{-63} </math> |
{{Display Coloured Jones|J2=<math> q^{-6} - q^{-7} +4 q^{-9} -3 q^{-10} -4 q^{-11} +10 q^{-12} -4 q^{-13} -11 q^{-14} +17 q^{-15} -2 q^{-16} -19 q^{-17} +21 q^{-18} +2 q^{-19} -25 q^{-20} +20 q^{-21} +6 q^{-22} -25 q^{-23} +17 q^{-24} +6 q^{-25} -18 q^{-26} +10 q^{-27} +3 q^{-28} -8 q^{-29} +4 q^{-30} + q^{-31} -2 q^{-32} + q^{-33} </math>|J3=<math> q^{-9} - q^{-10} + q^{-12} +3 q^{-13} -3 q^{-14} -3 q^{-15} + q^{-16} +10 q^{-17} -3 q^{-18} -11 q^{-19} -5 q^{-20} +20 q^{-21} +6 q^{-22} -18 q^{-23} -18 q^{-24} +24 q^{-25} +22 q^{-26} -19 q^{-27} -33 q^{-28} +19 q^{-29} +36 q^{-30} -11 q^{-31} -45 q^{-32} +8 q^{-33} +46 q^{-34} + q^{-35} -51 q^{-36} -7 q^{-37} +51 q^{-38} +15 q^{-39} -53 q^{-40} -18 q^{-41} +48 q^{-42} +22 q^{-43} -44 q^{-44} -21 q^{-45} +37 q^{-46} +18 q^{-47} -28 q^{-48} -15 q^{-49} +23 q^{-50} +7 q^{-51} -13 q^{-52} -6 q^{-53} +11 q^{-54} + q^{-55} -6 q^{-56} - q^{-57} +5 q^{-58} - q^{-59} - q^{-60} - q^{-61} +2 q^{-62} - q^{-63} </math>|J4=<math> q^{-12} - q^{-13} + q^{-15} +3 q^{-17} -4 q^{-18} -2 q^{-19} +3 q^{-20} +11 q^{-22} -8 q^{-23} -10 q^{-24} - q^{-25} -2 q^{-26} +30 q^{-27} -3 q^{-28} -16 q^{-29} -16 q^{-30} -21 q^{-31} +51 q^{-32} +15 q^{-33} -3 q^{-34} -28 q^{-35} -61 q^{-36} +54 q^{-37} +28 q^{-38} +31 q^{-39} -17 q^{-40} -102 q^{-41} +38 q^{-42} +17 q^{-43} +65 q^{-44} +19 q^{-45} -121 q^{-46} +15 q^{-47} -17 q^{-48} +85 q^{-49} +63 q^{-50} -119 q^{-51} - q^{-52} -61 q^{-53} +91 q^{-54} +103 q^{-55} -103 q^{-56} -16 q^{-57} -104 q^{-58} +94 q^{-59} +137 q^{-60} -82 q^{-61} -30 q^{-62} -138 q^{-63} +87 q^{-64} +158 q^{-65} -54 q^{-66} -32 q^{-67} -157 q^{-68} +65 q^{-69} +152 q^{-70} -27 q^{-71} -12 q^{-72} -144 q^{-73} +33 q^{-74} +113 q^{-75} -14 q^{-76} +14 q^{-77} -100 q^{-78} +12 q^{-79} +60 q^{-80} -17 q^{-81} +27 q^{-82} -50 q^{-83} +6 q^{-84} +24 q^{-85} -20 q^{-86} +21 q^{-87} -19 q^{-88} +7 q^{-89} +8 q^{-90} -16 q^{-91} +11 q^{-92} -6 q^{-93} +4 q^{-94} +3 q^{-95} -7 q^{-96} +4 q^{-97} -2 q^{-98} + q^{-99} + q^{-100} -2 q^{-101} + q^{-102} </math>|J5=<math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} +5 q^{-27} -7 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +8 q^{-32} +18 q^{-33} -4 q^{-34} -23 q^{-35} -20 q^{-36} -7 q^{-37} +12 q^{-38} +46 q^{-39} +25 q^{-40} -15 q^{-41} -40 q^{-42} -49 q^{-43} -22 q^{-44} +55 q^{-45} +70 q^{-46} +33 q^{-47} -17 q^{-48} -79 q^{-49} -89 q^{-50} +4 q^{-51} +77 q^{-52} +90 q^{-53} +56 q^{-54} -45 q^{-55} -125 q^{-56} -80 q^{-57} +10 q^{-58} +92 q^{-59} +126 q^{-60} +47 q^{-61} -80 q^{-62} -128 q^{-63} -95 q^{-64} +15 q^{-65} +139 q^{-66} +143 q^{-67} +26 q^{-68} -104 q^{-69} -178 q^{-70} -103 q^{-71} +87 q^{-72} +201 q^{-73} +146 q^{-74} -29 q^{-75} -218 q^{-76} -215 q^{-77} +3 q^{-78} +225 q^{-79} +253 q^{-80} +47 q^{-81} -231 q^{-82} -308 q^{-83} -74 q^{-84} +240 q^{-85} +340 q^{-86} +115 q^{-87} -246 q^{-88} -388 q^{-89} -139 q^{-90} +251 q^{-91} +416 q^{-92} +181 q^{-93} -248 q^{-94} -453 q^{-95} -207 q^{-96} +233 q^{-97} +458 q^{-98} +249 q^{-99} -200 q^{-100} -458 q^{-101} -275 q^{-102} +158 q^{-103} +424 q^{-104} +288 q^{-105} -98 q^{-106} -372 q^{-107} -288 q^{-108} +48 q^{-109} +305 q^{-110} +254 q^{-111} -3 q^{-112} -218 q^{-113} -221 q^{-114} -29 q^{-115} +160 q^{-116} +157 q^{-117} +37 q^{-118} -83 q^{-119} -118 q^{-120} -40 q^{-121} +53 q^{-122} +65 q^{-123} +29 q^{-124} -15 q^{-125} -40 q^{-126} -20 q^{-127} +8 q^{-128} +11 q^{-129} +13 q^{-130} +6 q^{-131} -9 q^{-132} -5 q^{-133} -5 q^{-135} + q^{-136} +10 q^{-137} -4 q^{-138} - q^{-139} +3 q^{-140} -5 q^{-141} - q^{-142} +5 q^{-143} -2 q^{-144} - q^{-145} +2 q^{-146} - q^{-147} - q^{-148} +2 q^{-149} - q^{-150} </math>|J6=<math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -5 q^{-31} +6 q^{-32} -8 q^{-33} -10 q^{-34} +5 q^{-35} +7 q^{-36} +12 q^{-37} -4 q^{-38} +18 q^{-39} -15 q^{-40} -31 q^{-41} -11 q^{-42} +24 q^{-44} +8 q^{-45} +61 q^{-46} +4 q^{-47} -42 q^{-48} -48 q^{-49} -45 q^{-50} -7 q^{-51} -9 q^{-52} +124 q^{-53} +70 q^{-54} +16 q^{-55} -43 q^{-56} -89 q^{-57} -93 q^{-58} -120 q^{-59} +117 q^{-60} +113 q^{-61} +129 q^{-62} +64 q^{-63} -18 q^{-64} -129 q^{-65} -276 q^{-66} -5 q^{-67} +14 q^{-68} +156 q^{-69} +182 q^{-70} +185 q^{-71} +5 q^{-72} -308 q^{-73} -113 q^{-74} -206 q^{-75} -13 q^{-76} +126 q^{-77} +355 q^{-78} +253 q^{-79} -124 q^{-80} -26 q^{-81} -357 q^{-82} -291 q^{-83} -164 q^{-84} +313 q^{-85} +420 q^{-86} +167 q^{-87} +284 q^{-88} -282 q^{-89} -481 q^{-90} -558 q^{-91} +50 q^{-92} +373 q^{-93} +381 q^{-94} +683 q^{-95} +5 q^{-96} -478 q^{-97} -885 q^{-98} -304 q^{-99} +139 q^{-100} +440 q^{-101} +1024 q^{-102} +374 q^{-103} -325 q^{-104} -1077 q^{-105} -618 q^{-106} -162 q^{-107} +388 q^{-108} +1255 q^{-109} +707 q^{-110} -133 q^{-111} -1175 q^{-112} -853 q^{-113} -425 q^{-114} +327 q^{-115} +1413 q^{-116} +964 q^{-117} +11 q^{-118} -1256 q^{-119} -1040 q^{-120} -623 q^{-121} +315 q^{-122} +1556 q^{-123} +1178 q^{-124} +109 q^{-125} -1348 q^{-126} -1223 q^{-127} -800 q^{-128} +306 q^{-129} +1676 q^{-130} +1385 q^{-131} +244 q^{-132} -1359 q^{-133} -1377 q^{-134} -1002 q^{-135} +183 q^{-136} +1662 q^{-137} +1543 q^{-138} +467 q^{-139} -1164 q^{-140} -1371 q^{-141} -1168 q^{-142} -86 q^{-143} +1395 q^{-144} +1506 q^{-145} +681 q^{-146} -767 q^{-147} -1099 q^{-148} -1139 q^{-149} -358 q^{-150} +923 q^{-151} +1189 q^{-152} +713 q^{-153} -353 q^{-154} -653 q^{-155} -860 q^{-156} -451 q^{-157} +465 q^{-158} +722 q^{-159} +528 q^{-160} -103 q^{-161} -256 q^{-162} -483 q^{-163} -357 q^{-164} +181 q^{-165} +333 q^{-166} +280 q^{-167} -25 q^{-168} -37 q^{-169} -199 q^{-170} -207 q^{-171} +62 q^{-172} +113 q^{-173} +110 q^{-174} -18 q^{-175} +36 q^{-176} -58 q^{-177} -102 q^{-178} +25 q^{-179} +25 q^{-180} +33 q^{-181} -17 q^{-182} +38 q^{-183} -8 q^{-184} -46 q^{-185} +12 q^{-186} + q^{-187} +7 q^{-188} -12 q^{-189} +22 q^{-190} +2 q^{-191} -18 q^{-192} +7 q^{-193} -2 q^{-194} +2 q^{-195} -7 q^{-196} +8 q^{-197} +2 q^{-198} -7 q^{-199} +4 q^{-200} - q^{-201} + q^{-202} -2 q^{-203} + q^{-204} + q^{-205} -2 q^{-206} + q^{-207} </math>|J7=Not Available}}
coloured_jones_4 = <math> q^{-12} - q^{-13} + q^{-15} +3 q^{-17} -4 q^{-18} -2 q^{-19} +3 q^{-20} +11 q^{-22} -8 q^{-23} -10 q^{-24} - q^{-25} -2 q^{-26} +30 q^{-27} -3 q^{-28} -16 q^{-29} -16 q^{-30} -21 q^{-31} +51 q^{-32} +15 q^{-33} -3 q^{-34} -28 q^{-35} -61 q^{-36} +54 q^{-37} +28 q^{-38} +31 q^{-39} -17 q^{-40} -102 q^{-41} +38 q^{-42} +17 q^{-43} +65 q^{-44} +19 q^{-45} -121 q^{-46} +15 q^{-47} -17 q^{-48} +85 q^{-49} +63 q^{-50} -119 q^{-51} - q^{-52} -61 q^{-53} +91 q^{-54} +103 q^{-55} -103 q^{-56} -16 q^{-57} -104 q^{-58} +94 q^{-59} +137 q^{-60} -82 q^{-61} -30 q^{-62} -138 q^{-63} +87 q^{-64} +158 q^{-65} -54 q^{-66} -32 q^{-67} -157 q^{-68} +65 q^{-69} +152 q^{-70} -27 q^{-71} -12 q^{-72} -144 q^{-73} +33 q^{-74} +113 q^{-75} -14 q^{-76} +14 q^{-77} -100 q^{-78} +12 q^{-79} +60 q^{-80} -17 q^{-81} +27 q^{-82} -50 q^{-83} +6 q^{-84} +24 q^{-85} -20 q^{-86} +21 q^{-87} -19 q^{-88} +7 q^{-89} +8 q^{-90} -16 q^{-91} +11 q^{-92} -6 q^{-93} +4 q^{-94} +3 q^{-95} -7 q^{-96} +4 q^{-97} -2 q^{-98} + q^{-99} + q^{-100} -2 q^{-101} + q^{-102} </math> |

coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} +5 q^{-27} -7 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +8 q^{-32} +18 q^{-33} -4 q^{-34} -23 q^{-35} -20 q^{-36} -7 q^{-37} +12 q^{-38} +46 q^{-39} +25 q^{-40} -15 q^{-41} -40 q^{-42} -49 q^{-43} -22 q^{-44} +55 q^{-45} +70 q^{-46} +33 q^{-47} -17 q^{-48} -79 q^{-49} -89 q^{-50} +4 q^{-51} +77 q^{-52} +90 q^{-53} +56 q^{-54} -45 q^{-55} -125 q^{-56} -80 q^{-57} +10 q^{-58} +92 q^{-59} +126 q^{-60} +47 q^{-61} -80 q^{-62} -128 q^{-63} -95 q^{-64} +15 q^{-65} +139 q^{-66} +143 q^{-67} +26 q^{-68} -104 q^{-69} -178 q^{-70} -103 q^{-71} +87 q^{-72} +201 q^{-73} +146 q^{-74} -29 q^{-75} -218 q^{-76} -215 q^{-77} +3 q^{-78} +225 q^{-79} +253 q^{-80} +47 q^{-81} -231 q^{-82} -308 q^{-83} -74 q^{-84} +240 q^{-85} +340 q^{-86} +115 q^{-87} -246 q^{-88} -388 q^{-89} -139 q^{-90} +251 q^{-91} +416 q^{-92} +181 q^{-93} -248 q^{-94} -453 q^{-95} -207 q^{-96} +233 q^{-97} +458 q^{-98} +249 q^{-99} -200 q^{-100} -458 q^{-101} -275 q^{-102} +158 q^{-103} +424 q^{-104} +288 q^{-105} -98 q^{-106} -372 q^{-107} -288 q^{-108} +48 q^{-109} +305 q^{-110} +254 q^{-111} -3 q^{-112} -218 q^{-113} -221 q^{-114} -29 q^{-115} +160 q^{-116} +157 q^{-117} +37 q^{-118} -83 q^{-119} -118 q^{-120} -40 q^{-121} +53 q^{-122} +65 q^{-123} +29 q^{-124} -15 q^{-125} -40 q^{-126} -20 q^{-127} +8 q^{-128} +11 q^{-129} +13 q^{-130} +6 q^{-131} -9 q^{-132} -5 q^{-133} -5 q^{-135} + q^{-136} +10 q^{-137} -4 q^{-138} - q^{-139} +3 q^{-140} -5 q^{-141} - q^{-142} +5 q^{-143} -2 q^{-144} - q^{-145} +2 q^{-146} - q^{-147} - q^{-148} +2 q^{-149} - q^{-150} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -5 q^{-31} +6 q^{-32} -8 q^{-33} -10 q^{-34} +5 q^{-35} +7 q^{-36} +12 q^{-37} -4 q^{-38} +18 q^{-39} -15 q^{-40} -31 q^{-41} -11 q^{-42} +24 q^{-44} +8 q^{-45} +61 q^{-46} +4 q^{-47} -42 q^{-48} -48 q^{-49} -45 q^{-50} -7 q^{-51} -9 q^{-52} +124 q^{-53} +70 q^{-54} +16 q^{-55} -43 q^{-56} -89 q^{-57} -93 q^{-58} -120 q^{-59} +117 q^{-60} +113 q^{-61} +129 q^{-62} +64 q^{-63} -18 q^{-64} -129 q^{-65} -276 q^{-66} -5 q^{-67} +14 q^{-68} +156 q^{-69} +182 q^{-70} +185 q^{-71} +5 q^{-72} -308 q^{-73} -113 q^{-74} -206 q^{-75} -13 q^{-76} +126 q^{-77} +355 q^{-78} +253 q^{-79} -124 q^{-80} -26 q^{-81} -357 q^{-82} -291 q^{-83} -164 q^{-84} +313 q^{-85} +420 q^{-86} +167 q^{-87} +284 q^{-88} -282 q^{-89} -481 q^{-90} -558 q^{-91} +50 q^{-92} +373 q^{-93} +381 q^{-94} +683 q^{-95} +5 q^{-96} -478 q^{-97} -885 q^{-98} -304 q^{-99} +139 q^{-100} +440 q^{-101} +1024 q^{-102} +374 q^{-103} -325 q^{-104} -1077 q^{-105} -618 q^{-106} -162 q^{-107} +388 q^{-108} +1255 q^{-109} +707 q^{-110} -133 q^{-111} -1175 q^{-112} -853 q^{-113} -425 q^{-114} +327 q^{-115} +1413 q^{-116} +964 q^{-117} +11 q^{-118} -1256 q^{-119} -1040 q^{-120} -623 q^{-121} +315 q^{-122} +1556 q^{-123} +1178 q^{-124} +109 q^{-125} -1348 q^{-126} -1223 q^{-127} -800 q^{-128} +306 q^{-129} +1676 q^{-130} +1385 q^{-131} +244 q^{-132} -1359 q^{-133} -1377 q^{-134} -1002 q^{-135} +183 q^{-136} +1662 q^{-137} +1543 q^{-138} +467 q^{-139} -1164 q^{-140} -1371 q^{-141} -1168 q^{-142} -86 q^{-143} +1395 q^{-144} +1506 q^{-145} +681 q^{-146} -767 q^{-147} -1099 q^{-148} -1139 q^{-149} -358 q^{-150} +923 q^{-151} +1189 q^{-152} +713 q^{-153} -353 q^{-154} -653 q^{-155} -860 q^{-156} -451 q^{-157} +465 q^{-158} +722 q^{-159} +528 q^{-160} -103 q^{-161} -256 q^{-162} -483 q^{-163} -357 q^{-164} +181 q^{-165} +333 q^{-166} +280 q^{-167} -25 q^{-168} -37 q^{-169} -199 q^{-170} -207 q^{-171} +62 q^{-172} +113 q^{-173} +110 q^{-174} -18 q^{-175} +36 q^{-176} -58 q^{-177} -102 q^{-178} +25 q^{-179} +25 q^{-180} +33 q^{-181} -17 q^{-182} +38 q^{-183} -8 q^{-184} -46 q^{-185} +12 q^{-186} + q^{-187} +7 q^{-188} -12 q^{-189} +22 q^{-190} +2 q^{-191} -18 q^{-192} +7 q^{-193} -2 q^{-194} +2 q^{-195} -7 q^{-196} +8 q^{-197} +2 q^{-198} -7 q^{-199} +4 q^{-200} - q^{-201} + q^{-202} -2 q^{-203} + q^{-204} + q^{-205} -2 q^{-206} + q^{-207} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 16, 8, 17], X[9, 18, 10, 1],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 16, 8, 17], X[9, 18, 10, 1],
X[17, 8, 18, 9], X[15, 10, 16, 11], X[5, 14, 6, 15], X[11, 2, 12, 3],
X[17, 8, 18, 9], X[15, 10, 16, 11], X[5, 14, 6, 15], X[11, 2, 12, 3],
X[13, 4, 14, 5]]</nowiki></pre></td></tr>
X[13, 4, 14, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 9]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 12, 14, 16, 18, 2, 4, 10, 8]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 12, 14, 16, 18, 2, 4, 10, 8]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, -2, -2, -2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, -2, -2, -2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 9]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 9]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 3
-7 + -- - -- + - + 6 t - 4 t + 2 t
-7 + -- - -- + - + 6 t - 4 t + 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 9]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 9]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 + 8 z + 8 z + 2 z</nowiki></pre></td></tr>
1 + 8 z + 8 z + 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 9]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 9]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 9]], KnotSignature[Knot[9, 9]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{31, -6}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 9]], KnotSignature[Knot[9, 9]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 9]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{31, -6}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 4 5 5 5 4 3 -4 -3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 9]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 4 5 5 5 4 3 -4 -3
-q + --- - --- + -- - -- + -- - -- + -- - q + q
-q + --- - --- + -- - -- + -- - -- + -- - q + q
11 10 9 8 7 6 5
11 10 9 8 7 6 5
q q q q q q q</nowiki></pre></td></tr>
q q q q q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 9]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 9]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 9]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 -32 -30 -26 2 -20 -18 2 -10

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 9]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 -32 -30 -26 2 -20 -18 2 -10
-q - q - q - q + --- + q + q + --- + q
-q - q - q - q + --- + q + q + --- + q
24 14
24 14
q q</nowiki></pre></td></tr>
q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 9]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 9]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 8 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 8 4
2 a + a - 2 a + 7 a z + 4 a z - 3 a z + 5 a z + 4 a z -
2 a + a - 2 a + 7 a z + 4 a z - 3 a z + 5 a z + 4 a z -
10 4 6 6 8 6
10 4 6 6 8 6
a z + a z + a z</nowiki></pre></td></tr>
a z + a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 9]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 9]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 7 9 13 15 6 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 7 9 13 15 6 2
-2 a + a + 2 a + a z - 2 a z + 2 a z - a z + 7 a z -
-2 a + a + 2 a + a z - 2 a z + 2 a z - a z + 7 a z -
Line 164: Line 113:
12 6 7 7 9 7 11 7 8 8 10 8
12 6 7 7 9 7 11 7 8 8 10 8
3 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr>
3 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 9]], Vassiliev[3][Knot[9, 9]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 9]], Vassiliev[3][Knot[9, 9]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{8, -22}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{8, -22}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 9]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 3 1 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 9]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 3 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
25 9 23 8 21 8 21 7 19 7 19 6
25 9 23 8 21 8 21 7 19 7 19 6
Line 183: Line 130:
11 2 9 2 7
11 2 9 2 7
q t q t q t</nowiki></pre></td></tr>
q t q t q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 9], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 9], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -33 2 -31 4 8 3 10 18 6 17 25
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -33 2 -31 4 8 3 10 18 6 17 25
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- +
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- +
32 30 29 28 27 26 25 24 23
32 30 29 28 27 26 25 24 23
Line 199: Line 145:
11 10 9
11 10 9
q q q</nowiki></pre></td></tr>
q q q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:41, 30 August 2005

9 8.gif

9_8

9 10.gif

9_10

9 9.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 9 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X3,12,4,13 X7,16,8,17 X9,18,10,1 X17,8,18,9 X15,10,16,11 X5,14,6,15 X11,2,12,3 X13,4,14,5
Gauss code -1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4
Dowker-Thistlethwaite code 6 12 14 16 18 2 4 10 8
Conway Notation [423]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

9 9 ML.gif 9 9 AP.gif
[{6, 1}, {11, 2}, {1, 3}, {2, 5}, {3, 7}, {4, 6}, {5, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 4}]

[edit Notes on presentations of 9 9]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-16][5]
Hyperbolic Volume 8.01682
A-Polynomial See Data:9 9/A-polynomial

[edit Notes for 9 9's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 9's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 31, -6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (8, -22)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 9 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-5         11
-7        110
-9       2  2
-11      21  -1
-13     32   1
-15    22    0
-17   33     0
-19  12      1
-21 13       -2
-23 1        1
-251         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials