9 9

From Knot Atlas
Jump to navigationJump to search

9 8.gif

9_8

9 10.gif

9_10

9 9.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 9 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X3,12,4,13 X7,16,8,17 X9,18,10,1 X17,8,18,9 X15,10,16,11 X5,14,6,15 X11,2,12,3 X13,4,14,5
Gauss code -1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4
Dowker-Thistlethwaite code 6 12 14 16 18 2 4 10 8
Conway Notation [423]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

9 9 ML.gif 9 9 AP.gif
[{6, 1}, {11, 2}, {1, 3}, {2, 5}, {3, 7}, {4, 6}, {5, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 4}]

[edit Notes on presentations of 9 9]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-16][5]
Hyperbolic Volume 8.01682
A-Polynomial See Data:9 9/A-polynomial

[edit Notes for 9 9's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 3 }[/math]
Topological 4 genus [math]\displaystyle{ 3 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -6

[edit Notes for 9 9's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^3-4 t^2+6 t-7+6 t^{-1} -4 t^{-2} +2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^6+8 z^4+8 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 31, -6 }
Jones polynomial [math]\displaystyle{ q^{-3} - q^{-4} +3 q^{-5} -4 q^{-6} +5 q^{-7} -5 q^{-8} +5 q^{-9} -4 q^{-10} +2 q^{-11} - q^{-12} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^4 a^{10}-3 z^2 a^{10}-2 a^{10}+z^6 a^8+4 z^4 a^8+4 z^2 a^8+a^8+z^6 a^6+5 z^4 a^6+7 z^2 a^6+2 a^6 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^3 a^{15}-z a^{15}+2 z^4 a^{14}-z^2 a^{14}+3 z^5 a^{13}-3 z^3 a^{13}+2 z a^{13}+3 z^6 a^{12}-4 z^4 a^{12}+3 z^2 a^{12}+2 z^7 a^{11}-2 z^5 a^{11}+z^8 a^{10}-z^6 a^{10}+2 z^4 a^{10}-6 z^2 a^{10}+2 a^{10}+3 z^7 a^9-8 z^5 a^9+5 z^3 a^9-2 z a^9+z^8 a^8-3 z^6 a^8+3 z^4 a^8-3 z^2 a^8+a^8+z^7 a^7-3 z^5 a^7+z^3 a^7+z a^7+z^6 a^6-5 z^4 a^6+7 z^2 a^6-2 a^6 }[/math]
The A2 invariant [math]\displaystyle{ -q^{36}-q^{32}-q^{30}-q^{26}+2 q^{24}+q^{20}+q^{18}+2 q^{14}+q^{10} }[/math]
The G2 invariant [math]\displaystyle{ q^{196}-q^{194}+2 q^{192}-2 q^{190}+q^{188}-2 q^{184}+5 q^{182}-6 q^{180}+6 q^{178}-6 q^{176}+2 q^{174}+3 q^{172}-7 q^{170}+12 q^{168}-11 q^{166}+9 q^{164}-5 q^{162}-2 q^{160}+6 q^{158}-11 q^{156}+11 q^{154}-7 q^{152}+3 q^{148}-7 q^{146}+5 q^{144}-q^{142}-8 q^{140}+9 q^{138}-12 q^{136}+5 q^{134}+5 q^{132}-15 q^{130}+20 q^{128}-18 q^{126}+10 q^{124}+q^{122}-12 q^{120}+18 q^{118}-18 q^{116}+14 q^{114}-4 q^{112}-4 q^{110}+11 q^{108}-10 q^{106}+7 q^{104}-2 q^{102}-5 q^{100}+8 q^{98}-8 q^{96}+2 q^{94}+6 q^{92}-11 q^{90}+16 q^{88}-11 q^{86}+q^{84}+7 q^{82}-11 q^{80}+16 q^{78}-12 q^{76}+6 q^{74}+2 q^{72}-5 q^{70}+10 q^{68}-7 q^{66}+5 q^{64}+2 q^{58}-2 q^{56}+2 q^{54}+q^{50} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (8, -22)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -176 }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{3760}{3} }[/math] [math]\displaystyle{ \frac{560}{3} }[/math] [math]\displaystyle{ -5632 }[/math] [math]\displaystyle{ -\frac{29696}{3} }[/math] [math]\displaystyle{ -\frac{5216}{3} }[/math] [math]\displaystyle{ -1264 }[/math] [math]\displaystyle{ \frac{16384}{3} }[/math] [math]\displaystyle{ 15488 }[/math] [math]\displaystyle{ \frac{120320}{3} }[/math] [math]\displaystyle{ \frac{17920}{3} }[/math] [math]\displaystyle{ \frac{1196284}{15} }[/math] [math]\displaystyle{ \frac{40544}{15} }[/math] [math]\displaystyle{ \frac{1354096}{45} }[/math] [math]\displaystyle{ \frac{4628}{9} }[/math] [math]\displaystyle{ \frac{57964}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-6 is the signature of 9 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-5         11
-7        110
-9       2  2
-11      21  -1
-13     32   1
-15    22    0
-17   33     0
-19  12      1
-21 13       -2
-23 1        1
-251         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-7 }[/math] [math]\displaystyle{ i=-5 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials