|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 40: |
Line 43: |
|
coloured_jones_5 = <math>-q^{132}+q^{130}+2 q^{129}+q^{128}-4 q^{126}-5 q^{125}-q^{124}+4 q^{123}+7 q^{122}+7 q^{121}-10 q^{119}-13 q^{118}-6 q^{117}+8 q^{116}+18 q^{115}+16 q^{114}-2 q^{113}-22 q^{112}-25 q^{111}-7 q^{110}+22 q^{109}+33 q^{108}+15 q^{107}-19 q^{106}-38 q^{105}-22 q^{104}+17 q^{103}+41 q^{102}+24 q^{101}-15 q^{100}-40 q^{99}-27 q^{98}+14 q^{97}+41 q^{96}+25 q^{95}-14 q^{94}-40 q^{93}-25 q^{92}+14 q^{91}+40 q^{90}+24 q^{89}-14 q^{88}-40 q^{87}-22 q^{86}+14 q^{85}+36 q^{84}+23 q^{83}-11 q^{82}-35 q^{81}-19 q^{80}+9 q^{79}+27 q^{78}+21 q^{77}-4 q^{76}-24 q^{75}-17 q^{74}+14 q^{72}+16 q^{71}+5 q^{70}-8 q^{69}-10 q^{68}-8 q^{67}-q^{66}+6 q^{65}+6 q^{64}+8 q^{63}+2 q^{62}-6 q^{61}-10 q^{60}-8 q^{59}-q^{58}+11 q^{57}+13 q^{56}+5 q^{55}-7 q^{54}-14 q^{53}-11 q^{52}+4 q^{51}+12 q^{50}+11 q^{49}-8 q^{47}-11 q^{46}-q^{45}+5 q^{44}+6 q^{43}+q^{42}-3 q^{41}-5 q^{40}+q^{39}+4 q^{38}+3 q^{37}-2 q^{36}-4 q^{35}-4 q^{34}+2 q^{33}+4 q^{32}+4 q^{31}-3 q^{29}-4 q^{28}+q^{27}+q^{26}+2 q^{25}+2 q^{24}-q^{23}-2 q^{22}+q^{21}+q^{18}-q^{16}+q^{15}</math> | |
|
coloured_jones_5 = <math>-q^{132}+q^{130}+2 q^{129}+q^{128}-4 q^{126}-5 q^{125}-q^{124}+4 q^{123}+7 q^{122}+7 q^{121}-10 q^{119}-13 q^{118}-6 q^{117}+8 q^{116}+18 q^{115}+16 q^{114}-2 q^{113}-22 q^{112}-25 q^{111}-7 q^{110}+22 q^{109}+33 q^{108}+15 q^{107}-19 q^{106}-38 q^{105}-22 q^{104}+17 q^{103}+41 q^{102}+24 q^{101}-15 q^{100}-40 q^{99}-27 q^{98}+14 q^{97}+41 q^{96}+25 q^{95}-14 q^{94}-40 q^{93}-25 q^{92}+14 q^{91}+40 q^{90}+24 q^{89}-14 q^{88}-40 q^{87}-22 q^{86}+14 q^{85}+36 q^{84}+23 q^{83}-11 q^{82}-35 q^{81}-19 q^{80}+9 q^{79}+27 q^{78}+21 q^{77}-4 q^{76}-24 q^{75}-17 q^{74}+14 q^{72}+16 q^{71}+5 q^{70}-8 q^{69}-10 q^{68}-8 q^{67}-q^{66}+6 q^{65}+6 q^{64}+8 q^{63}+2 q^{62}-6 q^{61}-10 q^{60}-8 q^{59}-q^{58}+11 q^{57}+13 q^{56}+5 q^{55}-7 q^{54}-14 q^{53}-11 q^{52}+4 q^{51}+12 q^{50}+11 q^{49}-8 q^{47}-11 q^{46}-q^{45}+5 q^{44}+6 q^{43}+q^{42}-3 q^{41}-5 q^{40}+q^{39}+4 q^{38}+3 q^{37}-2 q^{36}-4 q^{35}-4 q^{34}+2 q^{33}+4 q^{32}+4 q^{31}-3 q^{29}-4 q^{28}+q^{27}+q^{26}+2 q^{25}+2 q^{24}-q^{23}-2 q^{22}+q^{21}+q^{18}-q^{16}+q^{15}</math> | |
|
coloured_jones_6 = <math>q^{183}-q^{182}-q^{179}-q^{178}-q^{177}+3 q^{176}+q^{175}+4 q^{174}+2 q^{173}-q^{172}-7 q^{171}-8 q^{170}-4 q^{169}-3 q^{168}+13 q^{167}+15 q^{166}+15 q^{165}-2 q^{164}-13 q^{163}-26 q^{162}-30 q^{161}+q^{160}+21 q^{159}+46 q^{158}+31 q^{157}+13 q^{156}-38 q^{155}-68 q^{154}-40 q^{153}-5 q^{152}+60 q^{151}+69 q^{150}+64 q^{149}-22 q^{148}-85 q^{147}-79 q^{146}-44 q^{145}+50 q^{144}+84 q^{143}+103 q^{142}-q^{141}-81 q^{140}-94 q^{139}-66 q^{138}+37 q^{137}+83 q^{136}+118 q^{135}+6 q^{134}-75 q^{133}-95 q^{132}-72 q^{131}+33 q^{130}+81 q^{129}+123 q^{128}+4 q^{127}-74 q^{126}-95 q^{125}-74 q^{124}+33 q^{123}+82 q^{122}+122 q^{121}+3 q^{120}-69 q^{119}-94 q^{118}-74 q^{117}+30 q^{116}+78 q^{115}+117 q^{114}+6 q^{113}-58 q^{112}-88 q^{111}-74 q^{110}+20 q^{109}+64 q^{108}+109 q^{107}+16 q^{106}-34 q^{105}-75 q^{104}-76 q^{103}-q^{102}+41 q^{101}+94 q^{100}+28 q^{99}-q^{98}-50 q^{97}-71 q^{96}-25 q^{95}+11 q^{94}+67 q^{93}+29 q^{92}+30 q^{91}-17 q^{90}-50 q^{89}-33 q^{88}-15 q^{87}+30 q^{86}+11 q^{85}+38 q^{84}+8 q^{83}-18 q^{82}-16 q^{81}-16 q^{80}+4 q^{79}-14 q^{78}+20 q^{77}+6 q^{76}-2 q^{75}+7 q^{74}+4 q^{73}+7 q^{72}-19 q^{71}-12 q^{69}-12 q^{68}+11 q^{67}+15 q^{66}+18 q^{65}-3 q^{64}+q^{63}-16 q^{62}-22 q^{61}+2 q^{60}+6 q^{59}+14 q^{58}+5 q^{57}+8 q^{56}-7 q^{55}-16 q^{54}+2 q^{53}-q^{52}+6 q^{51}+q^{50}+5 q^{49}-5 q^{48}-10 q^{47}+6 q^{46}+6 q^{44}+q^{43}+3 q^{42}-6 q^{41}-9 q^{40}+4 q^{39}-q^{38}+4 q^{37}+3 q^{36}+4 q^{35}-3 q^{34}-5 q^{33}+2 q^{32}-2 q^{31}+q^{30}+q^{29}+3 q^{28}-q^{27}-2 q^{26}+2 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> | |
|
coloured_jones_6 = <math>q^{183}-q^{182}-q^{179}-q^{178}-q^{177}+3 q^{176}+q^{175}+4 q^{174}+2 q^{173}-q^{172}-7 q^{171}-8 q^{170}-4 q^{169}-3 q^{168}+13 q^{167}+15 q^{166}+15 q^{165}-2 q^{164}-13 q^{163}-26 q^{162}-30 q^{161}+q^{160}+21 q^{159}+46 q^{158}+31 q^{157}+13 q^{156}-38 q^{155}-68 q^{154}-40 q^{153}-5 q^{152}+60 q^{151}+69 q^{150}+64 q^{149}-22 q^{148}-85 q^{147}-79 q^{146}-44 q^{145}+50 q^{144}+84 q^{143}+103 q^{142}-q^{141}-81 q^{140}-94 q^{139}-66 q^{138}+37 q^{137}+83 q^{136}+118 q^{135}+6 q^{134}-75 q^{133}-95 q^{132}-72 q^{131}+33 q^{130}+81 q^{129}+123 q^{128}+4 q^{127}-74 q^{126}-95 q^{125}-74 q^{124}+33 q^{123}+82 q^{122}+122 q^{121}+3 q^{120}-69 q^{119}-94 q^{118}-74 q^{117}+30 q^{116}+78 q^{115}+117 q^{114}+6 q^{113}-58 q^{112}-88 q^{111}-74 q^{110}+20 q^{109}+64 q^{108}+109 q^{107}+16 q^{106}-34 q^{105}-75 q^{104}-76 q^{103}-q^{102}+41 q^{101}+94 q^{100}+28 q^{99}-q^{98}-50 q^{97}-71 q^{96}-25 q^{95}+11 q^{94}+67 q^{93}+29 q^{92}+30 q^{91}-17 q^{90}-50 q^{89}-33 q^{88}-15 q^{87}+30 q^{86}+11 q^{85}+38 q^{84}+8 q^{83}-18 q^{82}-16 q^{81}-16 q^{80}+4 q^{79}-14 q^{78}+20 q^{77}+6 q^{76}-2 q^{75}+7 q^{74}+4 q^{73}+7 q^{72}-19 q^{71}-12 q^{69}-12 q^{68}+11 q^{67}+15 q^{66}+18 q^{65}-3 q^{64}+q^{63}-16 q^{62}-22 q^{61}+2 q^{60}+6 q^{59}+14 q^{58}+5 q^{57}+8 q^{56}-7 q^{55}-16 q^{54}+2 q^{53}-q^{52}+6 q^{51}+q^{50}+5 q^{49}-5 q^{48}-10 q^{47}+6 q^{46}+6 q^{44}+q^{43}+3 q^{42}-6 q^{41}-9 q^{40}+4 q^{39}-q^{38}+4 q^{37}+3 q^{36}+4 q^{35}-3 q^{34}-5 q^{33}+2 q^{32}-2 q^{31}+q^{30}+q^{29}+3 q^{28}-q^{27}-2 q^{26}+2 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 47: |
Line 50: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 128]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 128]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[9, 17, 10, 16], X[5, 15, 6, 14], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[9, 17, 10, 16], X[5, 15, 6, 14], |
Line 67: |
Line 70: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 128]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_128_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 128]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_128_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 128]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 128]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 128]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 128]][t]</nowiki></pre></td></tr> |