|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 43: |
Line 46: |
|
coloured_jones_5 = <math>-q^{80}+2 q^{79}-q^{78}+q^{76}-2 q^{75}-q^{74}+5 q^{73}-3 q^{72}-2 q^{71}+5 q^{70}-4 q^{69}-q^{68}+9 q^{67}-9 q^{66}-9 q^{65}+9 q^{64}+7 q^{63}+8 q^{62}+7 q^{61}-29 q^{60}-40 q^{59}+13 q^{58}+57 q^{57}+66 q^{56}-119 q^{54}-145 q^{53}+7 q^{52}+211 q^{51}+264 q^{50}+23 q^{49}-356 q^{48}-465 q^{47}-70 q^{46}+520 q^{45}+746 q^{44}+213 q^{43}-709 q^{42}-1116 q^{41}-432 q^{40}+849 q^{39}+1524 q^{38}+771 q^{37}-892 q^{36}-1937 q^{35}-1193 q^{34}+824 q^{33}+2261 q^{32}+1624 q^{31}-611 q^{30}-2432 q^{29}-2051 q^{28}+332 q^{27}+2471 q^{26}+2307 q^{25}-2 q^{24}-2325 q^{23}-2486 q^{22}-273 q^{21}+2133 q^{20}+2456 q^{19}+501 q^{18}-1854 q^{17}-2402 q^{16}-622 q^{15}+1619 q^{14}+2217 q^{13}+737 q^{12}-1368 q^{11}-2108 q^{10}-776 q^9+1163 q^8+1909 q^7+888 q^6-914 q^5-1818 q^4-948 q^3+683 q^2+1598 q+1082-373 q^{-1} -1442 q^{-2} -1141 q^{-3} +88 q^{-4} +1136 q^{-5} +1187 q^{-6} +246 q^{-7} -851 q^{-8} -1125 q^{-9} -488 q^{-10} +459 q^{-11} +981 q^{-12} +687 q^{-13} -119 q^{-14} -731 q^{-15} -733 q^{-16} -213 q^{-17} +425 q^{-18} +679 q^{-19} +411 q^{-20} -111 q^{-21} -487 q^{-22} -496 q^{-23} -158 q^{-24} +256 q^{-25} +440 q^{-26} +300 q^{-27} -4 q^{-28} -281 q^{-29} -346 q^{-30} -168 q^{-31} +105 q^{-32} +257 q^{-33} +241 q^{-34} +74 q^{-35} -136 q^{-36} -227 q^{-37} -149 q^{-38} + q^{-39} +133 q^{-40} +172 q^{-41} +84 q^{-42} -46 q^{-43} -118 q^{-44} -111 q^{-45} -29 q^{-46} +59 q^{-47} +88 q^{-48} +57 q^{-49} -2 q^{-50} -54 q^{-51} -55 q^{-52} -15 q^{-53} +14 q^{-54} +32 q^{-55} +28 q^{-56} -19 q^{-58} -12 q^{-59} -6 q^{-60} +11 q^{-62} +6 q^{-63} -3 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math> | |
|
coloured_jones_5 = <math>-q^{80}+2 q^{79}-q^{78}+q^{76}-2 q^{75}-q^{74}+5 q^{73}-3 q^{72}-2 q^{71}+5 q^{70}-4 q^{69}-q^{68}+9 q^{67}-9 q^{66}-9 q^{65}+9 q^{64}+7 q^{63}+8 q^{62}+7 q^{61}-29 q^{60}-40 q^{59}+13 q^{58}+57 q^{57}+66 q^{56}-119 q^{54}-145 q^{53}+7 q^{52}+211 q^{51}+264 q^{50}+23 q^{49}-356 q^{48}-465 q^{47}-70 q^{46}+520 q^{45}+746 q^{44}+213 q^{43}-709 q^{42}-1116 q^{41}-432 q^{40}+849 q^{39}+1524 q^{38}+771 q^{37}-892 q^{36}-1937 q^{35}-1193 q^{34}+824 q^{33}+2261 q^{32}+1624 q^{31}-611 q^{30}-2432 q^{29}-2051 q^{28}+332 q^{27}+2471 q^{26}+2307 q^{25}-2 q^{24}-2325 q^{23}-2486 q^{22}-273 q^{21}+2133 q^{20}+2456 q^{19}+501 q^{18}-1854 q^{17}-2402 q^{16}-622 q^{15}+1619 q^{14}+2217 q^{13}+737 q^{12}-1368 q^{11}-2108 q^{10}-776 q^9+1163 q^8+1909 q^7+888 q^6-914 q^5-1818 q^4-948 q^3+683 q^2+1598 q+1082-373 q^{-1} -1442 q^{-2} -1141 q^{-3} +88 q^{-4} +1136 q^{-5} +1187 q^{-6} +246 q^{-7} -851 q^{-8} -1125 q^{-9} -488 q^{-10} +459 q^{-11} +981 q^{-12} +687 q^{-13} -119 q^{-14} -731 q^{-15} -733 q^{-16} -213 q^{-17} +425 q^{-18} +679 q^{-19} +411 q^{-20} -111 q^{-21} -487 q^{-22} -496 q^{-23} -158 q^{-24} +256 q^{-25} +440 q^{-26} +300 q^{-27} -4 q^{-28} -281 q^{-29} -346 q^{-30} -168 q^{-31} +105 q^{-32} +257 q^{-33} +241 q^{-34} +74 q^{-35} -136 q^{-36} -227 q^{-37} -149 q^{-38} + q^{-39} +133 q^{-40} +172 q^{-41} +84 q^{-42} -46 q^{-43} -118 q^{-44} -111 q^{-45} -29 q^{-46} +59 q^{-47} +88 q^{-48} +57 q^{-49} -2 q^{-50} -54 q^{-51} -55 q^{-52} -15 q^{-53} +14 q^{-54} +32 q^{-55} +28 q^{-56} -19 q^{-58} -12 q^{-59} -6 q^{-60} +11 q^{-62} +6 q^{-63} -3 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math> | |
|
coloured_jones_6 = <math>q^{111}-2 q^{110}+q^{109}-q^{107}+2 q^{106}-2 q^{105}+4 q^{104}-6 q^{103}+5 q^{102}-q^{101}-8 q^{100}+9 q^{99}-3 q^{98}+8 q^{97}-11 q^{96}+14 q^{95}-6 q^{94}-28 q^{93}+20 q^{92}+3 q^{91}+18 q^{90}-11 q^{89}+30 q^{88}-30 q^{87}-78 q^{86}+31 q^{85}+30 q^{84}+66 q^{83}+19 q^{82}+45 q^{81}-125 q^{80}-226 q^{79}+23 q^{78}+144 q^{77}+278 q^{76}+181 q^{75}+28 q^{74}-473 q^{73}-699 q^{72}-111 q^{71}+491 q^{70}+996 q^{69}+803 q^{68}+48 q^{67}-1376 q^{66}-2011 q^{65}-785 q^{64}+1052 q^{63}+2660 q^{62}+2554 q^{61}+617 q^{60}-2788 q^{59}-4658 q^{58}-2817 q^{57}+1109 q^{56}+5048 q^{55}+5911 q^{54}+2738 q^{53}-3642 q^{52}-8100 q^{51}-6606 q^{50}-584 q^{49}+6652 q^{48}+9938 q^{47}+6682 q^{46}-2449 q^{45}-10386 q^{44}-10831 q^{43}-4152 q^{42}+5889 q^{41}+12395 q^{40}+10773 q^{39}+661 q^{38}-10008 q^{37}-13141 q^{36}-7669 q^{35}+3223 q^{34}+12044 q^{33}+12757 q^{32}+3635 q^{31}-7772 q^{30}-12726 q^{29}-9196 q^{28}+719 q^{27}+10012 q^{26}+12321 q^{25}+4956 q^{24}-5607 q^{23}-10963 q^{22}-8916 q^{21}-566 q^{20}+8026 q^{19}+10991 q^{18}+5165 q^{17}-4175 q^{16}-9334 q^{15}-8315 q^{14}-1347 q^{13}+6443 q^{12}+9918 q^{11}+5532 q^{10}-2727 q^9-7915 q^8-8143 q^7-2609 q^6+4544 q^5+8900 q^4+6380 q^3-563 q^2-5955 q-7898-4355 q^{-1} +1812 q^{-2} +7113 q^{-3} +6961 q^{-4} +2077 q^{-5} -3006 q^{-6} -6632 q^{-7} -5650 q^{-8} -1381 q^{-9} +4114 q^{-10} +6224 q^{-11} +4103 q^{-12} +454 q^{-13} -3892 q^{-14} -5340 q^{-15} -3804 q^{-16} +495 q^{-17} +3739 q^{-18} +4257 q^{-19} +3031 q^{-20} -422 q^{-21} -3054 q^{-22} -4123 q^{-23} -2151 q^{-24} +464 q^{-25} +2278 q^{-26} +3337 q^{-27} +1982 q^{-28} - q^{-29} -2245 q^{-30} -2439 q^{-31} -1640 q^{-32} -350 q^{-33} +1529 q^{-34} +2018 q^{-35} +1730 q^{-36} +91 q^{-37} -807 q^{-38} -1461 q^{-39} -1546 q^{-40} -442 q^{-41} +453 q^{-42} +1317 q^{-43} +933 q^{-44} +690 q^{-45} -80 q^{-46} -886 q^{-47} -890 q^{-48} -667 q^{-49} +99 q^{-50} +269 q^{-51} +759 q^{-52} +633 q^{-53} +131 q^{-54} -209 q^{-55} -512 q^{-56} -340 q^{-57} -403 q^{-58} +102 q^{-59} +328 q^{-60} +330 q^{-61} +242 q^{-62} +18 q^{-63} -52 q^{-64} -350 q^{-65} -178 q^{-66} -65 q^{-67} +57 q^{-68} +133 q^{-69} +142 q^{-70} +152 q^{-71} -76 q^{-72} -65 q^{-73} -95 q^{-74} -61 q^{-75} -27 q^{-76} +32 q^{-77} +98 q^{-78} +13 q^{-79} +20 q^{-80} -15 q^{-81} -23 q^{-82} -37 q^{-83} -14 q^{-84} +24 q^{-85} +2 q^{-86} +14 q^{-87} +5 q^{-88} +3 q^{-89} -11 q^{-90} -8 q^{-91} +5 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math> | |
|
coloured_jones_6 = <math>q^{111}-2 q^{110}+q^{109}-q^{107}+2 q^{106}-2 q^{105}+4 q^{104}-6 q^{103}+5 q^{102}-q^{101}-8 q^{100}+9 q^{99}-3 q^{98}+8 q^{97}-11 q^{96}+14 q^{95}-6 q^{94}-28 q^{93}+20 q^{92}+3 q^{91}+18 q^{90}-11 q^{89}+30 q^{88}-30 q^{87}-78 q^{86}+31 q^{85}+30 q^{84}+66 q^{83}+19 q^{82}+45 q^{81}-125 q^{80}-226 q^{79}+23 q^{78}+144 q^{77}+278 q^{76}+181 q^{75}+28 q^{74}-473 q^{73}-699 q^{72}-111 q^{71}+491 q^{70}+996 q^{69}+803 q^{68}+48 q^{67}-1376 q^{66}-2011 q^{65}-785 q^{64}+1052 q^{63}+2660 q^{62}+2554 q^{61}+617 q^{60}-2788 q^{59}-4658 q^{58}-2817 q^{57}+1109 q^{56}+5048 q^{55}+5911 q^{54}+2738 q^{53}-3642 q^{52}-8100 q^{51}-6606 q^{50}-584 q^{49}+6652 q^{48}+9938 q^{47}+6682 q^{46}-2449 q^{45}-10386 q^{44}-10831 q^{43}-4152 q^{42}+5889 q^{41}+12395 q^{40}+10773 q^{39}+661 q^{38}-10008 q^{37}-13141 q^{36}-7669 q^{35}+3223 q^{34}+12044 q^{33}+12757 q^{32}+3635 q^{31}-7772 q^{30}-12726 q^{29}-9196 q^{28}+719 q^{27}+10012 q^{26}+12321 q^{25}+4956 q^{24}-5607 q^{23}-10963 q^{22}-8916 q^{21}-566 q^{20}+8026 q^{19}+10991 q^{18}+5165 q^{17}-4175 q^{16}-9334 q^{15}-8315 q^{14}-1347 q^{13}+6443 q^{12}+9918 q^{11}+5532 q^{10}-2727 q^9-7915 q^8-8143 q^7-2609 q^6+4544 q^5+8900 q^4+6380 q^3-563 q^2-5955 q-7898-4355 q^{-1} +1812 q^{-2} +7113 q^{-3} +6961 q^{-4} +2077 q^{-5} -3006 q^{-6} -6632 q^{-7} -5650 q^{-8} -1381 q^{-9} +4114 q^{-10} +6224 q^{-11} +4103 q^{-12} +454 q^{-13} -3892 q^{-14} -5340 q^{-15} -3804 q^{-16} +495 q^{-17} +3739 q^{-18} +4257 q^{-19} +3031 q^{-20} -422 q^{-21} -3054 q^{-22} -4123 q^{-23} -2151 q^{-24} +464 q^{-25} +2278 q^{-26} +3337 q^{-27} +1982 q^{-28} - q^{-29} -2245 q^{-30} -2439 q^{-31} -1640 q^{-32} -350 q^{-33} +1529 q^{-34} +2018 q^{-35} +1730 q^{-36} +91 q^{-37} -807 q^{-38} -1461 q^{-39} -1546 q^{-40} -442 q^{-41} +453 q^{-42} +1317 q^{-43} +933 q^{-44} +690 q^{-45} -80 q^{-46} -886 q^{-47} -890 q^{-48} -667 q^{-49} +99 q^{-50} +269 q^{-51} +759 q^{-52} +633 q^{-53} +131 q^{-54} -209 q^{-55} -512 q^{-56} -340 q^{-57} -403 q^{-58} +102 q^{-59} +328 q^{-60} +330 q^{-61} +242 q^{-62} +18 q^{-63} -52 q^{-64} -350 q^{-65} -178 q^{-66} -65 q^{-67} +57 q^{-68} +133 q^{-69} +142 q^{-70} +152 q^{-71} -76 q^{-72} -65 q^{-73} -95 q^{-74} -61 q^{-75} -27 q^{-76} +32 q^{-77} +98 q^{-78} +13 q^{-79} +20 q^{-80} -15 q^{-81} -23 q^{-82} -37 q^{-83} -14 q^{-84} +24 q^{-85} +2 q^{-86} +14 q^{-87} +5 q^{-88} +3 q^{-89} -11 q^{-90} -8 q^{-91} +5 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 50: |
Line 53: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 54]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 54]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[7, 12, 8, 13], X[11, 8, 12, 9], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[7, 12, 8, 13], X[11, 8, 12, 9], |
Line 70: |
Line 73: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 54]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_54_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 54]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_54_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 54]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 54]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 54]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 54]][t]</nowiki></pre></td></tr> |