|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 45: |
Line 48: |
|
coloured_jones_5 = <math>q^{90}-2 q^{89}+2 q^{87}-q^{86}+2 q^{84}-5 q^{83}-2 q^{82}+9 q^{81}+3 q^{80}-3 q^{79}-2 q^{78}-16 q^{77}-9 q^{76}+20 q^{75}+30 q^{74}+11 q^{73}-13 q^{72}-49 q^{71}-52 q^{70}+14 q^{69}+73 q^{68}+83 q^{67}+27 q^{66}-79 q^{65}-140 q^{64}-75 q^{63}+54 q^{62}+160 q^{61}+163 q^{60}+5 q^{59}-166 q^{58}-199 q^{57}-104 q^{56}+82 q^{55}+227 q^{54}+198 q^{53}+22 q^{52}-142 q^{51}-237 q^{50}-199 q^{49}-10 q^{48}+208 q^{47}+327 q^{46}+246 q^{45}-44 q^{44}-408 q^{43}-531 q^{42}-213 q^{41}+384 q^{40}+791 q^{39}+569 q^{38}-237 q^{37}-1005 q^{36}-976 q^{35}-4 q^{34}+1129 q^{33}+1376 q^{32}+340 q^{31}-1166 q^{30}-1751 q^{29}-708 q^{28}+1124 q^{27}+2062 q^{26}+1094 q^{25}-1034 q^{24}-2322 q^{23}-1437 q^{22}+902 q^{21}+2518 q^{20}+1763 q^{19}-774 q^{18}-2679 q^{17}-2026 q^{16}+642 q^{15}+2783 q^{14}+2269 q^{13}-501 q^{12}-2866 q^{11}-2471 q^{10}+356 q^9+2881 q^8+2637 q^7-156 q^6-2829 q^5-2786 q^4-57 q^3+2684 q^2+2832 q+339-2418 q^{-1} -2830 q^{-2} -597 q^{-3} +2062 q^{-4} +2667 q^{-5} +843 q^{-6} -1607 q^{-7} -2417 q^{-8} -997 q^{-9} +1135 q^{-10} +2040 q^{-11} +1068 q^{-12} -701 q^{-13} -1613 q^{-14} -1013 q^{-15} +334 q^{-16} +1172 q^{-17} +904 q^{-18} -87 q^{-19} -808 q^{-20} -699 q^{-21} -68 q^{-22} +484 q^{-23} +537 q^{-24} +131 q^{-25} -288 q^{-26} -356 q^{-27} -136 q^{-28} +129 q^{-29} +244 q^{-30} +119 q^{-31} -63 q^{-32} -138 q^{-33} -96 q^{-34} +10 q^{-35} +93 q^{-36} +66 q^{-37} -4 q^{-38} -36 q^{-39} -48 q^{-40} -20 q^{-41} +34 q^{-42} +28 q^{-43} +3 q^{-44} -2 q^{-45} -16 q^{-46} -17 q^{-47} +9 q^{-48} +10 q^{-49} +4 q^{-51} -3 q^{-52} -7 q^{-53} +2 q^{-54} +2 q^{-55} + q^{-57} -2 q^{-59} + q^{-60} </math> | |
|
coloured_jones_5 = <math>q^{90}-2 q^{89}+2 q^{87}-q^{86}+2 q^{84}-5 q^{83}-2 q^{82}+9 q^{81}+3 q^{80}-3 q^{79}-2 q^{78}-16 q^{77}-9 q^{76}+20 q^{75}+30 q^{74}+11 q^{73}-13 q^{72}-49 q^{71}-52 q^{70}+14 q^{69}+73 q^{68}+83 q^{67}+27 q^{66}-79 q^{65}-140 q^{64}-75 q^{63}+54 q^{62}+160 q^{61}+163 q^{60}+5 q^{59}-166 q^{58}-199 q^{57}-104 q^{56}+82 q^{55}+227 q^{54}+198 q^{53}+22 q^{52}-142 q^{51}-237 q^{50}-199 q^{49}-10 q^{48}+208 q^{47}+327 q^{46}+246 q^{45}-44 q^{44}-408 q^{43}-531 q^{42}-213 q^{41}+384 q^{40}+791 q^{39}+569 q^{38}-237 q^{37}-1005 q^{36}-976 q^{35}-4 q^{34}+1129 q^{33}+1376 q^{32}+340 q^{31}-1166 q^{30}-1751 q^{29}-708 q^{28}+1124 q^{27}+2062 q^{26}+1094 q^{25}-1034 q^{24}-2322 q^{23}-1437 q^{22}+902 q^{21}+2518 q^{20}+1763 q^{19}-774 q^{18}-2679 q^{17}-2026 q^{16}+642 q^{15}+2783 q^{14}+2269 q^{13}-501 q^{12}-2866 q^{11}-2471 q^{10}+356 q^9+2881 q^8+2637 q^7-156 q^6-2829 q^5-2786 q^4-57 q^3+2684 q^2+2832 q+339-2418 q^{-1} -2830 q^{-2} -597 q^{-3} +2062 q^{-4} +2667 q^{-5} +843 q^{-6} -1607 q^{-7} -2417 q^{-8} -997 q^{-9} +1135 q^{-10} +2040 q^{-11} +1068 q^{-12} -701 q^{-13} -1613 q^{-14} -1013 q^{-15} +334 q^{-16} +1172 q^{-17} +904 q^{-18} -87 q^{-19} -808 q^{-20} -699 q^{-21} -68 q^{-22} +484 q^{-23} +537 q^{-24} +131 q^{-25} -288 q^{-26} -356 q^{-27} -136 q^{-28} +129 q^{-29} +244 q^{-30} +119 q^{-31} -63 q^{-32} -138 q^{-33} -96 q^{-34} +10 q^{-35} +93 q^{-36} +66 q^{-37} -4 q^{-38} -36 q^{-39} -48 q^{-40} -20 q^{-41} +34 q^{-42} +28 q^{-43} +3 q^{-44} -2 q^{-45} -16 q^{-46} -17 q^{-47} +9 q^{-48} +10 q^{-49} +4 q^{-51} -3 q^{-52} -7 q^{-53} +2 q^{-54} +2 q^{-55} + q^{-57} -2 q^{-59} + q^{-60} </math> | |
|
coloured_jones_6 = <math>q^{126}-2 q^{125}+2 q^{123}-q^{122}-2 q^{120}+6 q^{119}-6 q^{118}-3 q^{117}+11 q^{116}-q^{115}-2 q^{114}-13 q^{113}+12 q^{112}-14 q^{111}-8 q^{110}+36 q^{109}+14 q^{108}+5 q^{107}-43 q^{106}+7 q^{105}-55 q^{104}-38 q^{103}+80 q^{102}+72 q^{101}+75 q^{100}-55 q^{99}+6 q^{98}-162 q^{97}-170 q^{96}+53 q^{95}+131 q^{94}+235 q^{93}+50 q^{92}+153 q^{91}-233 q^{90}-378 q^{89}-160 q^{88}-6 q^{87}+284 q^{86}+157 q^{85}+522 q^{84}-21 q^{83}-336 q^{82}-310 q^{81}-304 q^{80}-39 q^{79}-181 q^{78}+653 q^{77}+281 q^{76}+174 q^{75}+151 q^{74}-79 q^{73}-315 q^{72}-1049 q^{71}-79 q^{70}-218 q^{69}+454 q^{68}+1126 q^{67}+1289 q^{66}+531 q^{65}-1460 q^{64}-1367 q^{63}-2050 q^{62}-695 q^{61}+1387 q^{60}+3221 q^{59}+2903 q^{58}-157 q^{57}-1803 q^{56}-4397 q^{55}-3511 q^{54}-267 q^{53}+4179 q^{52}+5792 q^{51}+2917 q^{50}-285 q^{49}-5705 q^{48}-6862 q^{47}-3692 q^{46}+3198 q^{45}+7698 q^{44}+6564 q^{43}+2897 q^{42}-5203 q^{41}-9364 q^{40}-7647 q^{39}+696 q^{38}+8017 q^{37}+9509 q^{36}+6528 q^{35}-3394 q^{34}-10533 q^{33}-10960 q^{32}-2188 q^{31}+7252 q^{30}+11336 q^{29}+9566 q^{28}-1301 q^{27}-10792 q^{26}-13248 q^{25}-4584 q^{24}+6227 q^{23}+12356 q^{22}+11709 q^{21}+433 q^{20}-10720 q^{19}-14752 q^{18}-6362 q^{17}+5315 q^{16}+12954 q^{15}+13222 q^{14}+1892 q^{13}-10414 q^{12}-15733 q^{11}-7912 q^{10}+4177 q^9+13030 q^8+14349 q^7+3582 q^6-9333 q^5-15934 q^4-9452 q^3+2209 q^2+11893 q+14709+5625 q^{-1} -6869 q^{-2} -14545 q^{-3} -10393 q^{-4} -540 q^{-5} +8990 q^{-6} +13375 q^{-7} +7173 q^{-8} -3324 q^{-9} -11136 q^{-10} -9671 q^{-11} -2930 q^{-12} +4926 q^{-13} +10062 q^{-14} +7055 q^{-15} -147 q^{-16} -6647 q^{-17} -7105 q^{-18} -3691 q^{-19} +1384 q^{-20} +5925 q^{-21} +5217 q^{-22} +1360 q^{-23} -2894 q^{-24} -3925 q^{-25} -2838 q^{-26} -416 q^{-27} +2671 q^{-28} +2875 q^{-29} +1304 q^{-30} -883 q^{-31} -1584 q^{-32} -1495 q^{-33} -728 q^{-34} +984 q^{-35} +1215 q^{-36} +704 q^{-37} -223 q^{-38} -474 q^{-39} -579 q^{-40} -484 q^{-41} +375 q^{-42} +442 q^{-43} +284 q^{-44} -94 q^{-45} -117 q^{-46} -197 q^{-47} -262 q^{-48} +181 q^{-49} +163 q^{-50} +121 q^{-51} -53 q^{-52} -24 q^{-53} -73 q^{-54} -147 q^{-55} +87 q^{-56} +59 q^{-57} +62 q^{-58} -20 q^{-59} +5 q^{-60} -27 q^{-61} -76 q^{-62} +33 q^{-63} +13 q^{-64} +29 q^{-65} -6 q^{-66} +11 q^{-67} -6 q^{-68} -31 q^{-69} +11 q^{-70} -2 q^{-71} +10 q^{-72} -2 q^{-73} +5 q^{-74} -9 q^{-76} +4 q^{-77} -2 q^{-78} +2 q^{-79} + q^{-81} -2 q^{-83} + q^{-84} </math> | |
|
coloured_jones_6 = <math>q^{126}-2 q^{125}+2 q^{123}-q^{122}-2 q^{120}+6 q^{119}-6 q^{118}-3 q^{117}+11 q^{116}-q^{115}-2 q^{114}-13 q^{113}+12 q^{112}-14 q^{111}-8 q^{110}+36 q^{109}+14 q^{108}+5 q^{107}-43 q^{106}+7 q^{105}-55 q^{104}-38 q^{103}+80 q^{102}+72 q^{101}+75 q^{100}-55 q^{99}+6 q^{98}-162 q^{97}-170 q^{96}+53 q^{95}+131 q^{94}+235 q^{93}+50 q^{92}+153 q^{91}-233 q^{90}-378 q^{89}-160 q^{88}-6 q^{87}+284 q^{86}+157 q^{85}+522 q^{84}-21 q^{83}-336 q^{82}-310 q^{81}-304 q^{80}-39 q^{79}-181 q^{78}+653 q^{77}+281 q^{76}+174 q^{75}+151 q^{74}-79 q^{73}-315 q^{72}-1049 q^{71}-79 q^{70}-218 q^{69}+454 q^{68}+1126 q^{67}+1289 q^{66}+531 q^{65}-1460 q^{64}-1367 q^{63}-2050 q^{62}-695 q^{61}+1387 q^{60}+3221 q^{59}+2903 q^{58}-157 q^{57}-1803 q^{56}-4397 q^{55}-3511 q^{54}-267 q^{53}+4179 q^{52}+5792 q^{51}+2917 q^{50}-285 q^{49}-5705 q^{48}-6862 q^{47}-3692 q^{46}+3198 q^{45}+7698 q^{44}+6564 q^{43}+2897 q^{42}-5203 q^{41}-9364 q^{40}-7647 q^{39}+696 q^{38}+8017 q^{37}+9509 q^{36}+6528 q^{35}-3394 q^{34}-10533 q^{33}-10960 q^{32}-2188 q^{31}+7252 q^{30}+11336 q^{29}+9566 q^{28}-1301 q^{27}-10792 q^{26}-13248 q^{25}-4584 q^{24}+6227 q^{23}+12356 q^{22}+11709 q^{21}+433 q^{20}-10720 q^{19}-14752 q^{18}-6362 q^{17}+5315 q^{16}+12954 q^{15}+13222 q^{14}+1892 q^{13}-10414 q^{12}-15733 q^{11}-7912 q^{10}+4177 q^9+13030 q^8+14349 q^7+3582 q^6-9333 q^5-15934 q^4-9452 q^3+2209 q^2+11893 q+14709+5625 q^{-1} -6869 q^{-2} -14545 q^{-3} -10393 q^{-4} -540 q^{-5} +8990 q^{-6} +13375 q^{-7} +7173 q^{-8} -3324 q^{-9} -11136 q^{-10} -9671 q^{-11} -2930 q^{-12} +4926 q^{-13} +10062 q^{-14} +7055 q^{-15} -147 q^{-16} -6647 q^{-17} -7105 q^{-18} -3691 q^{-19} +1384 q^{-20} +5925 q^{-21} +5217 q^{-22} +1360 q^{-23} -2894 q^{-24} -3925 q^{-25} -2838 q^{-26} -416 q^{-27} +2671 q^{-28} +2875 q^{-29} +1304 q^{-30} -883 q^{-31} -1584 q^{-32} -1495 q^{-33} -728 q^{-34} +984 q^{-35} +1215 q^{-36} +704 q^{-37} -223 q^{-38} -474 q^{-39} -579 q^{-40} -484 q^{-41} +375 q^{-42} +442 q^{-43} +284 q^{-44} -94 q^{-45} -117 q^{-46} -197 q^{-47} -262 q^{-48} +181 q^{-49} +163 q^{-50} +121 q^{-51} -53 q^{-52} -24 q^{-53} -73 q^{-54} -147 q^{-55} +87 q^{-56} +59 q^{-57} +62 q^{-58} -20 q^{-59} +5 q^{-60} -27 q^{-61} -76 q^{-62} +33 q^{-63} +13 q^{-64} +29 q^{-65} -6 q^{-66} +11 q^{-67} -6 q^{-68} -31 q^{-69} +11 q^{-70} -2 q^{-71} +10 q^{-72} -2 q^{-73} +5 q^{-74} -9 q^{-76} +4 q^{-77} -2 q^{-78} +2 q^{-79} + q^{-81} -2 q^{-83} + q^{-84} </math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 52: |
Line 55: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 35]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 35]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
Line 72: |
Line 75: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 35]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_35_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 35]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_35_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 35]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 35]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 35]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 35]][t]</nowiki></pre></td></tr> |