10 34
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 34's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3849 X13,17,14,16 X5,15,6,14 X15,7,16,6 X9,1,10,20 X11,19,12,18 X17,13,18,12 X19,11,20,10 X7283 |
| Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -7, 8, -3, 4, -5, 3, -8, 7, -9, 6 |
| Dowker-Thistlethwaite code | 4 8 14 2 20 18 16 6 12 10 |
| Conway Notation | [2512] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{12, 2}, {1, 10}, {4, 11}, {10, 12}, {3, 5}, {2, 4}, {6, 3}, {5, 7}, {8, 6}, {7, 9}, {11, 8}, {9, 1}] |
[edit Notes on presentations of 10 34]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 34"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X13,17,14,16 X5,15,6,14 X15,7,16,6 X9,1,10,20 X11,19,12,18 X17,13,18,12 X19,11,20,10 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -7, 8, -3, 4, -5, 3, -8, 7, -9, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 2 20 18 16 6 12 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2512] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{1,1,1,2,-1,2,3,-2,-4,3,-4,-4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 10}, {4, 11}, {10, 12}, {3, 5}, {2, 4}, {6, 3}, {5, 7}, {8, 6}, {7, 9}, {11, 8}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 t^2-9 t+13-9 t^{-1} +3 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 z^4+3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 37, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^6-3 q^5+4 q^4-5 q^3+6 q^2-5 q+5-3 q^{-1} +2 q^{-2} - q^{-3} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4 a^{-4} +z^4-a^2 z^2+z^2 a^{-2} +2 z^2 a^{-4} -z^2 a^{-6} +2 z^2-a^2+ a^{-4} - a^{-6} +2} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +2 z^8 a^{-2} +4 z^8 a^{-4} +2 z^8 a^{-6} +2 z^7 a^{-1} -z^7 a^{-3} -2 z^7 a^{-5} +z^7 a^{-7} -5 z^6 a^{-2} -17 z^6 a^{-4} -10 z^6 a^{-6} +2 z^6+2 a z^5-2 z^5 a^{-1} -5 z^5 a^{-3} -6 z^5 a^{-5} -5 z^5 a^{-7} +2 a^2 z^4+4 z^4 a^{-2} +20 z^4 a^{-4} +14 z^4 a^{-6} +a^3 z^3-z^3 a^{-1} +5 z^3 a^{-3} +12 z^3 a^{-5} +7 z^3 a^{-7} -2 a^2 z^2-3 z^2 a^{-2} -8 z^2 a^{-4} -6 z^2 a^{-6} -3 z^2-a^3 z-a z-z a^{-3} -4 z a^{-5} -3 z a^{-7} +a^2+ a^{-4} + a^{-6} +2} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}-q^4+2 q^2+1+ q^{-2} + q^{-4} + q^{-8} + q^{-14} - q^{-16} - q^{-22} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-q^{50}+2 q^{48}-2 q^{46}-3 q^{40}+4 q^{38}-5 q^{36}+4 q^{34}-4 q^{32}+3 q^{28}-6 q^{26}+7 q^{24}-7 q^{22}+4 q^{20}-2 q^{18}-2 q^{16}+5 q^{14}-5 q^{12}+6 q^{10}-2 q^8+2 q^6+q^2+2- q^{-2} +5 q^{-4} -4 q^{-6} +4 q^{-8} - q^{-10} -2 q^{-12} +4 q^{-14} -3 q^{-16} +2 q^{-18} +2 q^{-20} -4 q^{-22} +3 q^{-24} + q^{-26} -6 q^{-28} +11 q^{-30} -11 q^{-32} +7 q^{-34} + q^{-36} -7 q^{-38} +15 q^{-40} -15 q^{-42} +12 q^{-44} -6 q^{-46} -2 q^{-48} +8 q^{-50} -10 q^{-52} +11 q^{-54} -6 q^{-56} +2 q^{-58} +3 q^{-60} -6 q^{-62} +5 q^{-64} - q^{-66} -6 q^{-68} +9 q^{-70} -9 q^{-72} +4 q^{-74} +4 q^{-76} -12 q^{-78} +16 q^{-80} -15 q^{-82} +7 q^{-84} -10 q^{-88} +12 q^{-90} -12 q^{-92} +8 q^{-94} -2 q^{-96} -2 q^{-98} +3 q^{-100} -4 q^{-102} +3 q^{-104} - q^{-106} + q^{-108} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+q^5-q^3+2 q+ q^{-3} + q^{-5} - q^{-7} + q^{-9} - q^{-11} + q^{-13} - q^{-15} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-q^{18}-q^{16}+2 q^{14}-2 q^{12}-q^{10}+2 q^8-2 q^6+q^4+2 q^2-2+2 q^{-2} +3 q^{-4} - q^{-6} - q^{-8} +3 q^{-10} + q^{-12} -2 q^{-14} +2 q^{-18} -2 q^{-20} -2 q^{-22} +3 q^{-24} - q^{-26} -4 q^{-28} +3 q^{-30} +2 q^{-32} -4 q^{-34} + q^{-36} +3 q^{-38} -2 q^{-40} - q^{-42} + q^{-44} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{39}+q^{37}+q^{35}-2 q^{31}+q^{29}+3 q^{27}-q^{25}-4 q^{23}-2 q^{21}+5 q^{19}+2 q^{17}-4 q^{15}-6 q^{13}+3 q^{11}+8 q^9+q^7-11 q^5-2 q^3+8 q+8 q^{-1} -5 q^{-3} -7 q^{-5} +2 q^{-7} +7 q^{-9} +6 q^{-11} -2 q^{-13} -6 q^{-15} - q^{-17} +9 q^{-19} +3 q^{-21} -8 q^{-23} -6 q^{-25} +7 q^{-27} +3 q^{-29} -7 q^{-31} -5 q^{-33} +6 q^{-35} +5 q^{-37} -3 q^{-39} -6 q^{-41} + q^{-43} +5 q^{-45} +2 q^{-47} -4 q^{-49} -6 q^{-51} + q^{-53} +8 q^{-55} +3 q^{-57} -6 q^{-59} -7 q^{-61} +4 q^{-63} +9 q^{-65} - q^{-67} -8 q^{-69} -3 q^{-71} +6 q^{-73} +5 q^{-75} -3 q^{-77} -4 q^{-79} +2 q^{-83} + q^{-85} - q^{-87} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{64}-q^{62}-q^{60}+3 q^{54}-3 q^{52}-q^{50}+q^{48}+2 q^{46}+7 q^{44}-7 q^{42}-6 q^{40}-q^{38}+7 q^{36}+15 q^{34}-10 q^{32}-16 q^{30}-8 q^{28}+14 q^{26}+29 q^{24}-9 q^{22}-29 q^{20}-21 q^{18}+19 q^{16}+46 q^{14}-39 q^{10}-39 q^8+15 q^6+57 q^4+19 q^2-30-48 q^{-2} -7 q^{-4} +43 q^{-6} +36 q^{-8} -33 q^{-12} -28 q^{-14} +6 q^{-16} +23 q^{-18} +25 q^{-20} +3 q^{-22} -25 q^{-24} -22 q^{-26} + q^{-28} +25 q^{-30} +21 q^{-32} -14 q^{-34} -27 q^{-36} -7 q^{-38} +21 q^{-40} +24 q^{-42} -13 q^{-44} -32 q^{-46} -6 q^{-48} +25 q^{-50} +29 q^{-52} -10 q^{-54} -38 q^{-56} -13 q^{-58} +22 q^{-60} +35 q^{-62} +3 q^{-64} -34 q^{-66} -22 q^{-68} +6 q^{-70} +29 q^{-72} +19 q^{-74} -14 q^{-76} -18 q^{-78} -12 q^{-80} +7 q^{-82} +17 q^{-84} +4 q^{-86} +3 q^{-88} -11 q^{-90} -13 q^{-92} - q^{-94} +2 q^{-96} +19 q^{-98} +8 q^{-100} -7 q^{-102} -13 q^{-104} -18 q^{-106} +10 q^{-108} +17 q^{-110} +10 q^{-112} -2 q^{-114} -21 q^{-116} -7 q^{-118} +4 q^{-120} +12 q^{-122} +11 q^{-124} -7 q^{-126} -7 q^{-128} -5 q^{-130} + q^{-132} +6 q^{-134} + q^{-136} -2 q^{-140} - q^{-142} + q^{-144} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{95}+q^{93}+q^{91}-q^{85}-q^{83}+q^{81}+q^{79}-2 q^{77}-q^{75}-2 q^{73}+2 q^{71}+6 q^{69}+3 q^{67}-5 q^{65}-9 q^{63}-5 q^{61}+6 q^{59}+16 q^{57}+12 q^{55}-9 q^{53}-25 q^{51}-16 q^{49}+13 q^{47}+30 q^{45}+22 q^{43}-12 q^{41}-44 q^{39}-26 q^{37}+24 q^{35}+52 q^{33}+23 q^{31}-34 q^{29}-68 q^{27}-28 q^{25}+56 q^{23}+86 q^{21}+27 q^{19}-73 q^{17}-115 q^{15}-36 q^{13}+87 q^{11}+139 q^9+59 q^7-81 q^5-162 q^3-91 q+67 q^{-1} +160 q^{-3} +122 q^{-5} -14 q^{-7} -138 q^{-9} -140 q^{-11} -30 q^{-13} +93 q^{-15} +132 q^{-17} +75 q^{-19} -28 q^{-21} -102 q^{-23} -99 q^{-25} -25 q^{-27} +60 q^{-29} +93 q^{-31} +66 q^{-33} -15 q^{-35} -85 q^{-37} -80 q^{-39} -9 q^{-41} +65 q^{-43} +81 q^{-45} +18 q^{-47} -60 q^{-49} -76 q^{-51} -14 q^{-53} +61 q^{-55} +75 q^{-57} +8 q^{-59} -72 q^{-61} -83 q^{-63} -10 q^{-65} +78 q^{-67} +100 q^{-69} +19 q^{-71} -84 q^{-73} -115 q^{-75} -42 q^{-77} +76 q^{-79} +134 q^{-81} +71 q^{-83} -60 q^{-85} -138 q^{-87} -98 q^{-89} +26 q^{-91} +134 q^{-93} +128 q^{-95} +9 q^{-97} -114 q^{-99} -138 q^{-101} -50 q^{-103} +77 q^{-105} +135 q^{-107} +81 q^{-109} -33 q^{-111} -114 q^{-113} -95 q^{-115} -9 q^{-117} +73 q^{-119} +91 q^{-121} +42 q^{-123} -30 q^{-125} -67 q^{-127} -49 q^{-129} -6 q^{-131} +29 q^{-133} +37 q^{-135} +25 q^{-137} +3 q^{-139} -14 q^{-141} -18 q^{-143} -21 q^{-145} -15 q^{-147} - q^{-149} +19 q^{-151} +29 q^{-153} +22 q^{-155} +3 q^{-157} -25 q^{-159} -37 q^{-161} -23 q^{-163} +9 q^{-165} +32 q^{-167} +33 q^{-169} +14 q^{-171} -17 q^{-173} -33 q^{-175} -25 q^{-177} +19 q^{-181} +24 q^{-183} +15 q^{-185} -6 q^{-187} -17 q^{-189} -14 q^{-191} -3 q^{-193} +5 q^{-195} +9 q^{-197} +7 q^{-199} - q^{-201} -4 q^{-203} -3 q^{-205} - q^{-207} +2 q^{-211} + q^{-213} - q^{-215} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}-q^4+2 q^2+1+ q^{-2} + q^{-4} + q^{-8} + q^{-14} - q^{-16} - q^{-22} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-2 q^{26}+4 q^{24}-6 q^{22}+9 q^{20}-12 q^{18}+14 q^{16}-18 q^{14}+17 q^{12}-20 q^{10}+16 q^8-16 q^6+12 q^4-8 q^2+8-2 q^{-2} +10 q^{-4} -4 q^{-6} +10 q^{-8} -2 q^{-10} + q^{-12} +12 q^{-14} -24 q^{-16} +38 q^{-18} -53 q^{-20} +62 q^{-22} -70 q^{-24} +68 q^{-26} -65 q^{-28} +52 q^{-30} -38 q^{-32} +18 q^{-34} + q^{-36} -20 q^{-38} +36 q^{-40} -46 q^{-42} +49 q^{-44} -46 q^{-46} +40 q^{-48} -30 q^{-50} +19 q^{-52} -12 q^{-54} +6 q^{-56} -2 q^{-58} + q^{-60} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-q^{22}+q^{18}-q^{16}-2 q^{14}+q^{12}+q^{10}-4 q^8-3 q^6+3 q^4-1+2 q^{-2} +5 q^{-4} +3 q^{-6} + q^{-8} +3 q^{-10} +2 q^{-12} +2 q^{-16} -2 q^{-20} - q^{-22} + q^{-24} - q^{-26} -2 q^{-28} - q^{-30} + q^{-32} -3 q^{-36} - q^{-38} + q^{-40} + q^{-42} - q^{-44} - q^{-46} +2 q^{-48} + q^{-50} - q^{-52} - q^{-54} + q^{-58} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-q^{20}+2 q^{16}-3 q^{14}-3 q^{12}+2 q^{10}-2 q^8-3 q^6+4 q^4+2 q^2+3 q^{-2} +3 q^{-4} - q^{-6} + q^{-8} +2 q^{-10} +2 q^{-12} - q^{-14} + q^{-16} +3 q^{-18} -2 q^{-20} +2 q^{-24} -2 q^{-26} - q^{-28} -3 q^{-32} - q^{-34} + q^{-36} -2 q^{-38} + q^{-40} + q^{-42} - q^{-44} + q^{-46} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}-q^9-q^5+2 q^3+q+2 q^{-1} + q^{-3} + q^{-5} + q^{-11} + q^{-15} + q^{-19} - q^{-21} - q^{-25} - q^{-29} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}+q^{20}-2 q^{18}+2 q^{16}-3 q^{14}+3 q^{12}-4 q^{10}+4 q^8-3 q^6+4 q^4-2 q^2+2+ q^{-2} - q^{-4} +5 q^{-6} -5 q^{-8} +8 q^{-10} -8 q^{-12} +9 q^{-14} -9 q^{-16} +7 q^{-18} -6 q^{-20} +4 q^{-22} -2 q^{-24} +3 q^{-28} -4 q^{-30} +5 q^{-32} -5 q^{-34} +5 q^{-36} -4 q^{-38} +3 q^{-40} -3 q^{-42} + q^{-44} - q^{-46} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-q^{32}-q^{30}+q^{28}+2 q^{26}-3 q^{22}-3 q^{20}+3 q^{16}+q^{14}-3 q^{12}-3 q^{10}+4 q^6+2 q^4-q^2-2+2 q^{-2} +4 q^{-4} +2 q^{-6} -3 q^{-8} - q^{-10} +3 q^{-12} +4 q^{-14} - q^{-16} -2 q^{-18} + q^{-20} +3 q^{-22} -2 q^{-26} + q^{-28} +3 q^{-30} -4 q^{-34} -2 q^{-36} +3 q^{-38} +4 q^{-40} - q^{-42} -6 q^{-44} -2 q^{-46} +4 q^{-48} +3 q^{-50} -3 q^{-52} -5 q^{-54} +4 q^{-58} + q^{-60} -3 q^{-62} -2 q^{-64} +2 q^{-66} +2 q^{-68} - q^{-70} - q^{-72} + q^{-76} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-q^{50}+2 q^{48}-2 q^{46}-3 q^{40}+4 q^{38}-5 q^{36}+4 q^{34}-4 q^{32}+3 q^{28}-6 q^{26}+7 q^{24}-7 q^{22}+4 q^{20}-2 q^{18}-2 q^{16}+5 q^{14}-5 q^{12}+6 q^{10}-2 q^8+2 q^6+q^2+2- q^{-2} +5 q^{-4} -4 q^{-6} +4 q^{-8} - q^{-10} -2 q^{-12} +4 q^{-14} -3 q^{-16} +2 q^{-18} +2 q^{-20} -4 q^{-22} +3 q^{-24} + q^{-26} -6 q^{-28} +11 q^{-30} -11 q^{-32} +7 q^{-34} + q^{-36} -7 q^{-38} +15 q^{-40} -15 q^{-42} +12 q^{-44} -6 q^{-46} -2 q^{-48} +8 q^{-50} -10 q^{-52} +11 q^{-54} -6 q^{-56} +2 q^{-58} +3 q^{-60} -6 q^{-62} +5 q^{-64} - q^{-66} -6 q^{-68} +9 q^{-70} -9 q^{-72} +4 q^{-74} +4 q^{-76} -12 q^{-78} +16 q^{-80} -15 q^{-82} +7 q^{-84} -10 q^{-88} +12 q^{-90} -12 q^{-92} +8 q^{-94} -2 q^{-96} -2 q^{-98} +3 q^{-100} -4 q^{-102} +3 q^{-104} - q^{-106} + q^{-108} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 34"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 t^2-9 t+13-9 t^{-1} +3 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^6-3 q^5+4 q^4-5 q^3+6 q^2-5 q+5-3 q^{-1} +2 q^{-2} - q^{-3} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4 a^{-4} +z^4-a^2 z^2+z^2 a^{-2} +2 z^2 a^{-4} -z^2 a^{-6} +2 z^2-a^2+ a^{-4} - a^{-6} +2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +2 z^8 a^{-2} +4 z^8 a^{-4} +2 z^8 a^{-6} +2 z^7 a^{-1} -z^7 a^{-3} -2 z^7 a^{-5} +z^7 a^{-7} -5 z^6 a^{-2} -17 z^6 a^{-4} -10 z^6 a^{-6} +2 z^6+2 a z^5-2 z^5 a^{-1} -5 z^5 a^{-3} -6 z^5 a^{-5} -5 z^5 a^{-7} +2 a^2 z^4+4 z^4 a^{-2} +20 z^4 a^{-4} +14 z^4 a^{-6} +a^3 z^3-z^3 a^{-1} +5 z^3 a^{-3} +12 z^3 a^{-5} +7 z^3 a^{-7} -2 a^2 z^2-3 z^2 a^{-2} -8 z^2 a^{-4} -6 z^2 a^{-6} -3 z^2-a^3 z-a z-z a^{-3} -4 z a^{-5} -3 z a^{-7} +a^2+ a^{-4} + a^{-6} +2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_135,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 34"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 t^2-9 t+13-9 t^{-1} +3 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^6-3 q^5+4 q^4-5 q^3+6 q^2-5 q+5-3 q^{-1} +2 q^{-2} - q^{-3} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_135,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (3, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 34. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{21}-2 q^{20}-q^{19}+6 q^{18}-4 q^{17}-6 q^{16}+12 q^{15}-3 q^{14}-13 q^{13}+15 q^{12}+q^{11}-18 q^{10}+15 q^9+5 q^8-20 q^7+13 q^6+8 q^5-18 q^4+9 q^3+8 q^2-14 q+8+4 q^{-1} -10 q^{-2} +7 q^{-3} + q^{-4} -6 q^{-5} +4 q^{-6} -2 q^{-8} + q^{-9} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{42}+2 q^{41}+q^{40}-2 q^{39}-5 q^{38}+3 q^{37}+9 q^{36}-q^{35}-14 q^{34}-2 q^{33}+16 q^{32}+9 q^{31}-19 q^{30}-13 q^{29}+17 q^{28}+18 q^{27}-14 q^{26}-20 q^{25}+10 q^{24}+20 q^{23}-8 q^{22}-17 q^{21}+6 q^{20}+13 q^{19}-5 q^{18}-9 q^{17}+7 q^{16}+2 q^{15}-7 q^{14}+q^{13}+11 q^{12}-11 q^{11}-9 q^{10}+12 q^9+17 q^8-21 q^7-14 q^6+16 q^5+25 q^4-20 q^3-19 q^2+7 q+27-7 q^{-1} -19 q^{-2} -3 q^{-3} +18 q^{-4} +5 q^{-5} -12 q^{-6} -8 q^{-7} +9 q^{-8} +7 q^{-9} -6 q^{-10} -5 q^{-11} +2 q^{-12} +5 q^{-13} -3 q^{-14} - q^{-15} +2 q^{-17} - q^{-18} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




