|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 42: |
Line 45: |
|
coloured_jones_3 = <math>q^{21}-3 q^{20}+q^{19}+5 q^{18}+3 q^{17}-18 q^{16}-10 q^{15}+37 q^{14}+37 q^{13}-61 q^{12}-90 q^{11}+66 q^{10}+184 q^9-50 q^8-281 q^7-35 q^6+393 q^5+156 q^4-460 q^3-330 q^2+492 q+508-457 q^{-1} -697 q^{-2} +396 q^{-3} +844 q^{-4} -286 q^{-5} -970 q^{-6} +168 q^{-7} +1052 q^{-8} -39 q^{-9} -1091 q^{-10} -91 q^{-11} +1081 q^{-12} +210 q^{-13} -1010 q^{-14} -318 q^{-15} +891 q^{-16} +385 q^{-17} -719 q^{-18} -413 q^{-19} +532 q^{-20} +382 q^{-21} -343 q^{-22} -318 q^{-23} +195 q^{-24} +231 q^{-25} -100 q^{-26} -137 q^{-27} +37 q^{-28} +78 q^{-29} -18 q^{-30} -34 q^{-31} +8 q^{-32} +14 q^{-33} -6 q^{-34} -3 q^{-35} + q^{-36} +3 q^{-37} -3 q^{-38} + q^{-39} </math> | |
|
coloured_jones_3 = <math>q^{21}-3 q^{20}+q^{19}+5 q^{18}+3 q^{17}-18 q^{16}-10 q^{15}+37 q^{14}+37 q^{13}-61 q^{12}-90 q^{11}+66 q^{10}+184 q^9-50 q^8-281 q^7-35 q^6+393 q^5+156 q^4-460 q^3-330 q^2+492 q+508-457 q^{-1} -697 q^{-2} +396 q^{-3} +844 q^{-4} -286 q^{-5} -970 q^{-6} +168 q^{-7} +1052 q^{-8} -39 q^{-9} -1091 q^{-10} -91 q^{-11} +1081 q^{-12} +210 q^{-13} -1010 q^{-14} -318 q^{-15} +891 q^{-16} +385 q^{-17} -719 q^{-18} -413 q^{-19} +532 q^{-20} +382 q^{-21} -343 q^{-22} -318 q^{-23} +195 q^{-24} +231 q^{-25} -100 q^{-26} -137 q^{-27} +37 q^{-28} +78 q^{-29} -18 q^{-30} -34 q^{-31} +8 q^{-32} +14 q^{-33} -6 q^{-34} -3 q^{-35} + q^{-36} +3 q^{-37} -3 q^{-38} + q^{-39} </math> | |
|
coloured_jones_4 = <math>q^{36}-3 q^{35}+q^{34}+5 q^{33}-3 q^{32}+3 q^{31}-21 q^{30}+2 q^{29}+39 q^{28}+9 q^{27}+14 q^{26}-120 q^{25}-66 q^{24}+121 q^{23}+151 q^{22}+202 q^{21}-315 q^{20}-439 q^{19}-45 q^{18}+379 q^{17}+969 q^{16}-109 q^{15}-1009 q^{14}-990 q^{13}-71 q^{12}+2090 q^{11}+1161 q^{10}-744 q^9-2354 q^8-1950 q^7+2308 q^6+2993 q^5+1157 q^4-2760 q^3-4608 q^2+807 q+3963+4009 q^{-1} -1499 q^{-2} -6615 q^{-3} -1739 q^{-4} +3449 q^{-5} +6490 q^{-6} +756 q^{-7} -7352 q^{-8} -4194 q^{-9} +2018 q^{-10} +8024 q^{-11} +3037 q^{-12} -7124 q^{-13} -6052 q^{-14} +331 q^{-15} +8656 q^{-16} +4972 q^{-17} -6150 q^{-18} -7223 q^{-19} -1495 q^{-20} +8244 q^{-21} +6420 q^{-22} -4265 q^{-23} -7298 q^{-24} -3320 q^{-25} +6391 q^{-26} +6806 q^{-27} -1667 q^{-28} -5768 q^{-29} -4343 q^{-30} +3453 q^{-31} +5516 q^{-32} +479 q^{-33} -3098 q^{-34} -3771 q^{-35} +881 q^{-36} +3111 q^{-37} +1124 q^{-38} -840 q^{-39} -2133 q^{-40} -202 q^{-41} +1108 q^{-42} +657 q^{-43} +79 q^{-44} -770 q^{-45} -214 q^{-46} +237 q^{-47} +165 q^{-48} +137 q^{-49} -190 q^{-50} -52 q^{-51} +40 q^{-52} +3 q^{-53} +49 q^{-54} -39 q^{-55} -3 q^{-56} +11 q^{-57} -9 q^{-58} +10 q^{-59} -7 q^{-60} + q^{-61} +3 q^{-62} -3 q^{-63} + q^{-64} </math> | |
|
coloured_jones_4 = <math>q^{36}-3 q^{35}+q^{34}+5 q^{33}-3 q^{32}+3 q^{31}-21 q^{30}+2 q^{29}+39 q^{28}+9 q^{27}+14 q^{26}-120 q^{25}-66 q^{24}+121 q^{23}+151 q^{22}+202 q^{21}-315 q^{20}-439 q^{19}-45 q^{18}+379 q^{17}+969 q^{16}-109 q^{15}-1009 q^{14}-990 q^{13}-71 q^{12}+2090 q^{11}+1161 q^{10}-744 q^9-2354 q^8-1950 q^7+2308 q^6+2993 q^5+1157 q^4-2760 q^3-4608 q^2+807 q+3963+4009 q^{-1} -1499 q^{-2} -6615 q^{-3} -1739 q^{-4} +3449 q^{-5} +6490 q^{-6} +756 q^{-7} -7352 q^{-8} -4194 q^{-9} +2018 q^{-10} +8024 q^{-11} +3037 q^{-12} -7124 q^{-13} -6052 q^{-14} +331 q^{-15} +8656 q^{-16} +4972 q^{-17} -6150 q^{-18} -7223 q^{-19} -1495 q^{-20} +8244 q^{-21} +6420 q^{-22} -4265 q^{-23} -7298 q^{-24} -3320 q^{-25} +6391 q^{-26} +6806 q^{-27} -1667 q^{-28} -5768 q^{-29} -4343 q^{-30} +3453 q^{-31} +5516 q^{-32} +479 q^{-33} -3098 q^{-34} -3771 q^{-35} +881 q^{-36} +3111 q^{-37} +1124 q^{-38} -840 q^{-39} -2133 q^{-40} -202 q^{-41} +1108 q^{-42} +657 q^{-43} +79 q^{-44} -770 q^{-45} -214 q^{-46} +237 q^{-47} +165 q^{-48} +137 q^{-49} -190 q^{-50} -52 q^{-51} +40 q^{-52} +3 q^{-53} +49 q^{-54} -39 q^{-55} -3 q^{-56} +11 q^{-57} -9 q^{-58} +10 q^{-59} -7 q^{-60} + q^{-61} +3 q^{-62} -3 q^{-63} + q^{-64} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 51: |
Line 54: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 110]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 110]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 20, 8, 1], X[3, 11, 4, 10], X[5, 16, 6, 17], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 20, 8, 1], X[3, 11, 4, 10], X[5, 16, 6, 17], |
Line 71: |
Line 74: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 110]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_110_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 110]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_110_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 110]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 110]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 110]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 110]][t]</nowiki></pre></td></tr> |