9 9: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 9 |
n = 9 |
Line 41: Line 44:
coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} +5 q^{-27} -7 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +8 q^{-32} +18 q^{-33} -4 q^{-34} -23 q^{-35} -20 q^{-36} -7 q^{-37} +12 q^{-38} +46 q^{-39} +25 q^{-40} -15 q^{-41} -40 q^{-42} -49 q^{-43} -22 q^{-44} +55 q^{-45} +70 q^{-46} +33 q^{-47} -17 q^{-48} -79 q^{-49} -89 q^{-50} +4 q^{-51} +77 q^{-52} +90 q^{-53} +56 q^{-54} -45 q^{-55} -125 q^{-56} -80 q^{-57} +10 q^{-58} +92 q^{-59} +126 q^{-60} +47 q^{-61} -80 q^{-62} -128 q^{-63} -95 q^{-64} +15 q^{-65} +139 q^{-66} +143 q^{-67} +26 q^{-68} -104 q^{-69} -178 q^{-70} -103 q^{-71} +87 q^{-72} +201 q^{-73} +146 q^{-74} -29 q^{-75} -218 q^{-76} -215 q^{-77} +3 q^{-78} +225 q^{-79} +253 q^{-80} +47 q^{-81} -231 q^{-82} -308 q^{-83} -74 q^{-84} +240 q^{-85} +340 q^{-86} +115 q^{-87} -246 q^{-88} -388 q^{-89} -139 q^{-90} +251 q^{-91} +416 q^{-92} +181 q^{-93} -248 q^{-94} -453 q^{-95} -207 q^{-96} +233 q^{-97} +458 q^{-98} +249 q^{-99} -200 q^{-100} -458 q^{-101} -275 q^{-102} +158 q^{-103} +424 q^{-104} +288 q^{-105} -98 q^{-106} -372 q^{-107} -288 q^{-108} +48 q^{-109} +305 q^{-110} +254 q^{-111} -3 q^{-112} -218 q^{-113} -221 q^{-114} -29 q^{-115} +160 q^{-116} +157 q^{-117} +37 q^{-118} -83 q^{-119} -118 q^{-120} -40 q^{-121} +53 q^{-122} +65 q^{-123} +29 q^{-124} -15 q^{-125} -40 q^{-126} -20 q^{-127} +8 q^{-128} +11 q^{-129} +13 q^{-130} +6 q^{-131} -9 q^{-132} -5 q^{-133} -5 q^{-135} + q^{-136} +10 q^{-137} -4 q^{-138} - q^{-139} +3 q^{-140} -5 q^{-141} - q^{-142} +5 q^{-143} -2 q^{-144} - q^{-145} +2 q^{-146} - q^{-147} - q^{-148} +2 q^{-149} - q^{-150} </math> |
coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} +5 q^{-27} -7 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +8 q^{-32} +18 q^{-33} -4 q^{-34} -23 q^{-35} -20 q^{-36} -7 q^{-37} +12 q^{-38} +46 q^{-39} +25 q^{-40} -15 q^{-41} -40 q^{-42} -49 q^{-43} -22 q^{-44} +55 q^{-45} +70 q^{-46} +33 q^{-47} -17 q^{-48} -79 q^{-49} -89 q^{-50} +4 q^{-51} +77 q^{-52} +90 q^{-53} +56 q^{-54} -45 q^{-55} -125 q^{-56} -80 q^{-57} +10 q^{-58} +92 q^{-59} +126 q^{-60} +47 q^{-61} -80 q^{-62} -128 q^{-63} -95 q^{-64} +15 q^{-65} +139 q^{-66} +143 q^{-67} +26 q^{-68} -104 q^{-69} -178 q^{-70} -103 q^{-71} +87 q^{-72} +201 q^{-73} +146 q^{-74} -29 q^{-75} -218 q^{-76} -215 q^{-77} +3 q^{-78} +225 q^{-79} +253 q^{-80} +47 q^{-81} -231 q^{-82} -308 q^{-83} -74 q^{-84} +240 q^{-85} +340 q^{-86} +115 q^{-87} -246 q^{-88} -388 q^{-89} -139 q^{-90} +251 q^{-91} +416 q^{-92} +181 q^{-93} -248 q^{-94} -453 q^{-95} -207 q^{-96} +233 q^{-97} +458 q^{-98} +249 q^{-99} -200 q^{-100} -458 q^{-101} -275 q^{-102} +158 q^{-103} +424 q^{-104} +288 q^{-105} -98 q^{-106} -372 q^{-107} -288 q^{-108} +48 q^{-109} +305 q^{-110} +254 q^{-111} -3 q^{-112} -218 q^{-113} -221 q^{-114} -29 q^{-115} +160 q^{-116} +157 q^{-117} +37 q^{-118} -83 q^{-119} -118 q^{-120} -40 q^{-121} +53 q^{-122} +65 q^{-123} +29 q^{-124} -15 q^{-125} -40 q^{-126} -20 q^{-127} +8 q^{-128} +11 q^{-129} +13 q^{-130} +6 q^{-131} -9 q^{-132} -5 q^{-133} -5 q^{-135} + q^{-136} +10 q^{-137} -4 q^{-138} - q^{-139} +3 q^{-140} -5 q^{-141} - q^{-142} +5 q^{-143} -2 q^{-144} - q^{-145} +2 q^{-146} - q^{-147} - q^{-148} +2 q^{-149} - q^{-150} </math> |
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -5 q^{-31} +6 q^{-32} -8 q^{-33} -10 q^{-34} +5 q^{-35} +7 q^{-36} +12 q^{-37} -4 q^{-38} +18 q^{-39} -15 q^{-40} -31 q^{-41} -11 q^{-42} +24 q^{-44} +8 q^{-45} +61 q^{-46} +4 q^{-47} -42 q^{-48} -48 q^{-49} -45 q^{-50} -7 q^{-51} -9 q^{-52} +124 q^{-53} +70 q^{-54} +16 q^{-55} -43 q^{-56} -89 q^{-57} -93 q^{-58} -120 q^{-59} +117 q^{-60} +113 q^{-61} +129 q^{-62} +64 q^{-63} -18 q^{-64} -129 q^{-65} -276 q^{-66} -5 q^{-67} +14 q^{-68} +156 q^{-69} +182 q^{-70} +185 q^{-71} +5 q^{-72} -308 q^{-73} -113 q^{-74} -206 q^{-75} -13 q^{-76} +126 q^{-77} +355 q^{-78} +253 q^{-79} -124 q^{-80} -26 q^{-81} -357 q^{-82} -291 q^{-83} -164 q^{-84} +313 q^{-85} +420 q^{-86} +167 q^{-87} +284 q^{-88} -282 q^{-89} -481 q^{-90} -558 q^{-91} +50 q^{-92} +373 q^{-93} +381 q^{-94} +683 q^{-95} +5 q^{-96} -478 q^{-97} -885 q^{-98} -304 q^{-99} +139 q^{-100} +440 q^{-101} +1024 q^{-102} +374 q^{-103} -325 q^{-104} -1077 q^{-105} -618 q^{-106} -162 q^{-107} +388 q^{-108} +1255 q^{-109} +707 q^{-110} -133 q^{-111} -1175 q^{-112} -853 q^{-113} -425 q^{-114} +327 q^{-115} +1413 q^{-116} +964 q^{-117} +11 q^{-118} -1256 q^{-119} -1040 q^{-120} -623 q^{-121} +315 q^{-122} +1556 q^{-123} +1178 q^{-124} +109 q^{-125} -1348 q^{-126} -1223 q^{-127} -800 q^{-128} +306 q^{-129} +1676 q^{-130} +1385 q^{-131} +244 q^{-132} -1359 q^{-133} -1377 q^{-134} -1002 q^{-135} +183 q^{-136} +1662 q^{-137} +1543 q^{-138} +467 q^{-139} -1164 q^{-140} -1371 q^{-141} -1168 q^{-142} -86 q^{-143} +1395 q^{-144} +1506 q^{-145} +681 q^{-146} -767 q^{-147} -1099 q^{-148} -1139 q^{-149} -358 q^{-150} +923 q^{-151} +1189 q^{-152} +713 q^{-153} -353 q^{-154} -653 q^{-155} -860 q^{-156} -451 q^{-157} +465 q^{-158} +722 q^{-159} +528 q^{-160} -103 q^{-161} -256 q^{-162} -483 q^{-163} -357 q^{-164} +181 q^{-165} +333 q^{-166} +280 q^{-167} -25 q^{-168} -37 q^{-169} -199 q^{-170} -207 q^{-171} +62 q^{-172} +113 q^{-173} +110 q^{-174} -18 q^{-175} +36 q^{-176} -58 q^{-177} -102 q^{-178} +25 q^{-179} +25 q^{-180} +33 q^{-181} -17 q^{-182} +38 q^{-183} -8 q^{-184} -46 q^{-185} +12 q^{-186} + q^{-187} +7 q^{-188} -12 q^{-189} +22 q^{-190} +2 q^{-191} -18 q^{-192} +7 q^{-193} -2 q^{-194} +2 q^{-195} -7 q^{-196} +8 q^{-197} +2 q^{-198} -7 q^{-199} +4 q^{-200} - q^{-201} + q^{-202} -2 q^{-203} + q^{-204} + q^{-205} -2 q^{-206} + q^{-207} </math> |
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -5 q^{-31} +6 q^{-32} -8 q^{-33} -10 q^{-34} +5 q^{-35} +7 q^{-36} +12 q^{-37} -4 q^{-38} +18 q^{-39} -15 q^{-40} -31 q^{-41} -11 q^{-42} +24 q^{-44} +8 q^{-45} +61 q^{-46} +4 q^{-47} -42 q^{-48} -48 q^{-49} -45 q^{-50} -7 q^{-51} -9 q^{-52} +124 q^{-53} +70 q^{-54} +16 q^{-55} -43 q^{-56} -89 q^{-57} -93 q^{-58} -120 q^{-59} +117 q^{-60} +113 q^{-61} +129 q^{-62} +64 q^{-63} -18 q^{-64} -129 q^{-65} -276 q^{-66} -5 q^{-67} +14 q^{-68} +156 q^{-69} +182 q^{-70} +185 q^{-71} +5 q^{-72} -308 q^{-73} -113 q^{-74} -206 q^{-75} -13 q^{-76} +126 q^{-77} +355 q^{-78} +253 q^{-79} -124 q^{-80} -26 q^{-81} -357 q^{-82} -291 q^{-83} -164 q^{-84} +313 q^{-85} +420 q^{-86} +167 q^{-87} +284 q^{-88} -282 q^{-89} -481 q^{-90} -558 q^{-91} +50 q^{-92} +373 q^{-93} +381 q^{-94} +683 q^{-95} +5 q^{-96} -478 q^{-97} -885 q^{-98} -304 q^{-99} +139 q^{-100} +440 q^{-101} +1024 q^{-102} +374 q^{-103} -325 q^{-104} -1077 q^{-105} -618 q^{-106} -162 q^{-107} +388 q^{-108} +1255 q^{-109} +707 q^{-110} -133 q^{-111} -1175 q^{-112} -853 q^{-113} -425 q^{-114} +327 q^{-115} +1413 q^{-116} +964 q^{-117} +11 q^{-118} -1256 q^{-119} -1040 q^{-120} -623 q^{-121} +315 q^{-122} +1556 q^{-123} +1178 q^{-124} +109 q^{-125} -1348 q^{-126} -1223 q^{-127} -800 q^{-128} +306 q^{-129} +1676 q^{-130} +1385 q^{-131} +244 q^{-132} -1359 q^{-133} -1377 q^{-134} -1002 q^{-135} +183 q^{-136} +1662 q^{-137} +1543 q^{-138} +467 q^{-139} -1164 q^{-140} -1371 q^{-141} -1168 q^{-142} -86 q^{-143} +1395 q^{-144} +1506 q^{-145} +681 q^{-146} -767 q^{-147} -1099 q^{-148} -1139 q^{-149} -358 q^{-150} +923 q^{-151} +1189 q^{-152} +713 q^{-153} -353 q^{-154} -653 q^{-155} -860 q^{-156} -451 q^{-157} +465 q^{-158} +722 q^{-159} +528 q^{-160} -103 q^{-161} -256 q^{-162} -483 q^{-163} -357 q^{-164} +181 q^{-165} +333 q^{-166} +280 q^{-167} -25 q^{-168} -37 q^{-169} -199 q^{-170} -207 q^{-171} +62 q^{-172} +113 q^{-173} +110 q^{-174} -18 q^{-175} +36 q^{-176} -58 q^{-177} -102 q^{-178} +25 q^{-179} +25 q^{-180} +33 q^{-181} -17 q^{-182} +38 q^{-183} -8 q^{-184} -46 q^{-185} +12 q^{-186} + q^{-187} +7 q^{-188} -12 q^{-189} +22 q^{-190} +2 q^{-191} -18 q^{-192} +7 q^{-193} -2 q^{-194} +2 q^{-195} -7 q^{-196} +8 q^{-197} +2 q^{-198} -7 q^{-199} +4 q^{-200} - q^{-201} + q^{-202} -2 q^{-203} + q^{-204} + q^{-205} -2 q^{-206} + q^{-207} </math> |
coloured_jones_7 = |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
computer_talk =
computer_talk =
<table>
<table>
Line 48: Line 51:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 16, 8, 17], X[9, 18, 10, 1],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 16, 8, 17], X[9, 18, 10, 1],
Line 66: Line 69:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 9]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 9]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 9]][t]</nowiki></pre></td></tr>

Revision as of 17:54, 31 August 2005

9 8.gif

9_8

9 10.gif

9_10

9 9.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 9 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X3,12,4,13 X7,16,8,17 X9,18,10,1 X17,8,18,9 X15,10,16,11 X5,14,6,15 X11,2,12,3 X13,4,14,5
Gauss code -1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4
Dowker-Thistlethwaite code 6 12 14 16 18 2 4 10 8
Conway Notation [423]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

9 9 ML.gif 9 9 AP.gif
[{6, 1}, {11, 2}, {1, 3}, {2, 5}, {3, 7}, {4, 6}, {5, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 4}]

[edit Notes on presentations of 9 9]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-16][5]
Hyperbolic Volume 8.01682
A-Polynomial See Data:9 9/A-polynomial

[edit Notes for 9 9's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 9's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 31, -6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (8, -22)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 9 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-5         11
-7        110
-9       2  2
-11      21  -1
-13     32   1
-15    22    0
-17   33     0
-19  12      1
-21 13       -2
-23 1        1
-251         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials