K11a32: Difference between revisions
No edit summary  | 
				No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- This page was  generated from the splice template "Hoste-Thistlethwaite_Splice_Template". Please do not edit! -->  | 
  |||
<!-- This page was generated from the splice base [[Hoste-Thistlethwaite_Splice_Base]]. Please do not edit!  | 
|||
<!--  --> <!--  | 
  |||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
|||
 -->  | 
  |||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. -->  | 
|||
<!--  -->  | 
|||
<!--  -->  | 
|||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit!  | 
|||
<!-- Almost certainly, you want to edit [[Template:Hoste-Thistlethwaite Knot Page]], which actually produces this page.  | 
|||
<!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately.  | 
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. -->  | 
|||
<!--  -->  | 
|||
{{Hoste-Thistlethwaite Knot Page|  | 
  {{Hoste-Thistlethwaite Knot Page|  | 
||
n = 11 |  | 
  n = 11 |  | 
||
t = a |  | 
  t = <nowiki>a</nowiki> |  | 
||
k = 32 |  | 
  k = 32 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-7,4,-2,5,-11,6,-10,7,-3,8,-5,9,-6,10,-9,11,-8/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-7,4,-2,5,-11,6,-10,7,-3,8,-5,9,-6,10,-9,11,-8/goTop.html |  | 
||
| Line 43: | Line 52: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>  | 
           <tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>  | 
||
         </table>   | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 32]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Knot[11, Alternating, 32]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[11, Alternating, 32]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 6, 15, 5], X[2, 8, 3, 7],   | 
|||
  X[16, 10, 17, 9], X[18, 11, 19, 12], X[6, 14, 7, 13],   | 
    X[16, 10, 17, 9], X[18, 11, 19, 12], X[6, 14, 7, 13],   | 
||
| Line 53: | Line 72: | ||
  X[22, 16, 1, 15], X[20, 17, 21, 18], X[12, 19, 13, 20],   | 
    X[22, 16, 1, 15], X[20, 17, 21, 18], X[12, 19, 13, 20],   | 
||
  X[10, 22, 11, 21]]</nowiki></  | 
    X[10, 22, 11, 21]]</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 32]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9,   | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[11, Alternating, 32]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9,   | 
|||
  -6, 10, -9, 11, -8]</nowiki></  | 
    -6, 10, -9, 11, -8]</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 32]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 32]]</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
|||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 32]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:K11a32_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[6]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[Knot[11, Alternating, 32]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      3    14   32              2      3  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[Knot[11, Alternating, 32]]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 32]]]</nowiki></code></td></tr>  | 
|||
<tr align=left><td></td><td>[[Image:K11a32_ML.gif]]</td></tr><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[11, Alternating, 32]][t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      3    14   32              2      3  | 
|||
-41 + -- - -- + -- + 32 t - 14 t  + 3 t  | 
  -41 + -- - -- + -- + 32 t - 14 t  + 3 t  | 
||
       3    2   t  | 
         3    2   t  | 
||
      t    t</nowiki></  | 
        t    t</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 32]][z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4      6  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
|||
1 + 3 z  + 4 z  + 3 z</nowiki></pre></td></tr>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[11, Alternating, 32]][z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 32]}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       2      4      6  | 
|||
1 + 3 z  + 4 z  + 3 z</nowiki></code></td></tr>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, Alternating, 32]][q]</nowiki></pre></td></tr>  | 
  |||
</table>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -2   4              2       3       4       5       6      7  | 
  |||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[11, Alternating, 32]}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[11, Alternating, 32]], KnotSignature[Knot[11, Alternating, 32]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{139, 2}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>J=Jones[Knot[11, Alternating, 32]][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -2   4              2       3       4       5       6      7  | 
|||
-9 - q   + - + 15 q - 19 q  + 23 q  - 22 q  + 19 q  - 14 q  + 8 q  -   | 
  -9 - q   + - + 15 q - 19 q  + 23 q  - 22 q  + 19 q  - 14 q  + 8 q  -   | 
||
           q  | 
             q  | 
||
     8    9  | 
       8    9  | 
||
  4 q  + q</nowiki></  | 
    4 q  + q</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 32]}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[11, Alternating, 32]}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 32]][q]</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>  | 
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[11, Alternating, 32]][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -6   2     -2      2      4      6      8      12      14  | 
|||
-2 - q   + -- - q   + 4 q  - 4 q  + 3 q  + 2 q  + 5 q   - 3 q   +   | 
  -2 - q   + -- - q   + 4 q  - 4 q  + 3 q  + 2 q  + 5 q   - 3 q   +   | 
||
            4  | 
              4  | 
||
| Line 90: | Line 160: | ||
     16      18      20      22      24    28  | 
       16      18      20      22      24    28  | 
||
  3 q   - 2 q   - 4 q   + 2 q   - 2 q   + q</nowiki></  | 
    3 q   - 2 q   - 4 q   + 2 q   - 2 q   + q</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 32]][a, z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                                              2     2  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[11, Alternating, 32]][a, z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                                                              2     2  | 
|||
 -8   5    6     -2   2 z   10 z   13 z   7 z   2 z      2   z     z  | 
   -8   5    6     -2   2 z   10 z   13 z   7 z   2 z      2   z     z  | 
||
a   + -- + -- + a   - --- - ---- - ---- - --- - --- + 2 z  + --- - -- -   | 
  a   + -- + -- + a   - --- - ---- - ---- - --- - --- + 2 z  + --- - -- -   | 
||
| Line 126: | Line 201: | ||
  ---- + ---- + ---- + --- + ---  | 
    ---- + ---- + ---- + --- + ---  | 
||
    7      5      3     6     4  | 
      7      5      3     6     4  | 
||
   a      a      a     a     a</nowiki></  | 
     a      a      a     a     a</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 32]], Vassiliev[3][Knot[11, Alternating, 32]]}</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 4}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[11, Alternating, 32]], Vassiliev[3][Knot[11, Alternating, 32]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 4}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[11, Alternating, 32]][q, t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>         3     1       3      1      6    3 q       3        5  | 
|||
9 q + 7 q  + ----- + ----- + ---- + --- + --- + 11 q  t + 8 q  t +   | 
  9 q + 7 q  + ----- + ----- + ---- + --- + --- + 11 q  t + 8 q  t +   | 
||
              5  3    3  2      2   q t    t  | 
                5  3    3  2      2   q t    t  | 
||
| Line 139: | Line 224: | ||
     11  5      13  5      13  6      15  6    15  7      17  7    19  8  | 
       11  5      13  5      13  6      15  6    15  7      17  7    19  8  | 
||
  5 q   t  + 9 q   t  + 3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t</nowiki></  | 
    5 q   t  + 9 q   t  + 3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t</nowiki></code></td></tr>  | 
||
</table> }}  | 
|||
Revision as of 16:22, 1 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. | 
Knot presentations
| Planar diagram presentation | X4251 X8493 X14,6,15,5 X2837 X16,10,17,9 X18,11,19,12 X6,14,7,13 X22,16,1,15 X20,17,21,18 X12,19,13,20 X10,22,11,21 | 
| Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, -9, 11, -8 | 
| Dowker-Thistlethwaite code | 4 8 14 2 16 18 6 22 20 12 10 | 
| A Braid Representative | {{{braid_table}}} | 
| A Morse Link Presentation |  
 | 
Three dimensional invariants
  | 
Four dimensional invariants
  | 
Polynomial invariants
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["K11a32"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 139, 2 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["K11a32"];
 | 
In[4]:=
 | 
{A = Alexander[K][t], J = Jones[K][q]}
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[4]=
 | 
{ , } | 
In[5]:=
 | 
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
 | 
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
 | 
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
 | 
Out[5]=
 | 
{} | 
In[6]:=
 | 
DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
 | 
Out[6]=
 | 
{} | 
Vassiliev invariants
| V2 and V3: | (3, 4) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a32. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
 See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top.  | 
  | 



