K11a31

From Knot Atlas
Jump to navigationJump to search

K11a30.gif

K11a30

K11a32.gif

K11a32

K11a31.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a31 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,6,15,5 X2837 X16,10,17,9 X18,11,19,12 X6,14,7,13 X22,16,1,15 X20,18,21,17 X10,19,11,20 X12,22,13,21
Gauss code 1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -11, 7, -3, 8, -5, 9, -6, 10, -9, 11, -8
Dowker-Thistlethwaite code 4 8 14 2 16 18 6 22 20 10 12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a31 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11a31's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^3+14 t^2-28 t+35-28 t^{-1} +14 t^{-2} -3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^6-4 z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 125, 4 }
Jones polynomial [math]\displaystyle{ -q^{11}+4 q^{10}-8 q^9+13 q^8-18 q^7+20 q^6-20 q^5+17 q^4-12 q^3+8 q^2-3 q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} -2 z^6 a^{-6} +z^4 a^{-2} -z^4 a^{-4} -7 z^4 a^{-6} +3 z^4 a^{-8} +2 z^2 a^{-2} +3 z^2 a^{-4} -10 z^2 a^{-6} +7 z^2 a^{-8} -z^2 a^{-10} + a^{-2} +3 a^{-4} -6 a^{-6} +4 a^{-8} - a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-6} +z^{10} a^{-8} +4 z^9 a^{-5} +8 z^9 a^{-7} +4 z^9 a^{-9} +5 z^8 a^{-4} +13 z^8 a^{-6} +15 z^8 a^{-8} +7 z^8 a^{-10} +3 z^7 a^{-3} -2 z^7 a^{-5} -4 z^7 a^{-7} +8 z^7 a^{-9} +7 z^7 a^{-11} +z^6 a^{-2} -11 z^6 a^{-4} -37 z^6 a^{-6} -35 z^6 a^{-8} -6 z^6 a^{-10} +4 z^6 a^{-12} -7 z^5 a^{-3} -10 z^5 a^{-5} -20 z^5 a^{-7} -29 z^5 a^{-9} -11 z^5 a^{-11} +z^5 a^{-13} -3 z^4 a^{-2} +8 z^4 a^{-4} +38 z^4 a^{-6} +30 z^4 a^{-8} -3 z^4 a^{-10} -6 z^4 a^{-12} +4 z^3 a^{-3} +10 z^3 a^{-5} +25 z^3 a^{-7} +26 z^3 a^{-9} +6 z^3 a^{-11} -z^3 a^{-13} +3 z^2 a^{-2} -6 z^2 a^{-4} -22 z^2 a^{-6} -13 z^2 a^{-8} +2 z^2 a^{-10} +2 z^2 a^{-12} -4 z a^{-5} -9 z a^{-7} -7 z a^{-9} -2 z a^{-11} - a^{-2} +3 a^{-4} +6 a^{-6} +4 a^{-8} + a^{-10} }[/math]
The A2 invariant Data:K11a31/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a31/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a317,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{206}{3} }[/math] [math]\displaystyle{ \frac{106}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{1136}{3} }[/math] [math]\displaystyle{ \frac{320}{3} }[/math] [math]\displaystyle{ 136 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{824}{3} }[/math] [math]\displaystyle{ \frac{424}{3} }[/math] [math]\displaystyle{ \frac{44191}{30} }[/math] [math]\displaystyle{ -\frac{2182}{15} }[/math] [math]\displaystyle{ \frac{47942}{45} }[/math] [math]\displaystyle{ \frac{1697}{18} }[/math] [math]\displaystyle{ \frac{3391}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a31. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          3 3
19         51 -4
17        83  5
15       105   -5
13      108    2
11     1010     0
9    710      -3
7   510       5
5  37        -4
3 16         5
1 2          -2
-11           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a30.gif

K11a30

K11a32.gif

K11a32