K11a129: Difference between revisions
| No edit summary | DrorsRobot (talk | contribs)  No edit summary | ||
| Line 1: | Line 1: | ||
| <!--                       WARNING! WARNING! WARNING! | <!--                       WARNING! WARNING! WARNING! | ||
| <!-- This page was generated from the splice  | <!-- This page was generated from the splice template [[Hoste-Thistlethwaite_Splice_Base]]. Please do not edit! | ||
| <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | ||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. --> | <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. --> | ||
| <!--  --> | <!-- <math>\text{Null}</math> --> | ||
| <!--  --> | <!-- <math>\text{Null}</math> --> | ||
| <!--                       WARNING! WARNING! WARNING! | <!--                       WARNING! WARNING! WARNING! | ||
| <!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit! | <!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit! | ||
| Line 10: | Line 10: | ||
| <!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately. | <!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately. | ||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. --> | <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. --> | ||
| <!--  --> | <!-- <math>\text{Null}</math> --> | ||
| {{Hoste-Thistlethwaite Knot Page| | {{Hoste-Thistlethwaite Knot Page| | ||
| n = 11 | | n = 11 | | ||
| t =  | t = a | | ||
| k = 129 | | k = 129 | | ||
| KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,3,-10,4,-11,5,-2,6,-9,7,-3,8,-5,9,-7,10,-4,11,-8/goTop.html | | KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,3,-10,4,-11,5,-2,6,-9,7,-3,8,-5,9,-7,10,-4,11,-8/goTop.html | | ||
| braid_table     = <table cellspacing=0 cellpadding=0 border=0> | |||
| <tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| </table> | | |||
| same_alexander  =  | | same_alexander  =  | | ||
| same_jones      =  | | same_jones      =  | | ||
| Line 40: | Line 46: | ||
| <tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | <tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | ||
| </table> | | </table> | | ||
| coloured_jones_2 =  | | coloured_jones_2 = <math>\textrm{NotAvailable}(q)</math> | | ||
| coloured_jones_3 =  | | coloured_jones_3 = <math>\textrm{NotAvailable}(q)</math> | | ||
| coloured_jones_4 =  | | coloured_jones_4 = <math>\textrm{NotAvailable}(q)</math> | | ||
| coloured_jones_5 =  | | coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | | ||
| coloured_jones_6 =  | | coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | | ||
| coloured_jones_7 =  | | coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | | ||
| computer_talk =  | computer_talk =  | ||
|          <table> |          <table> | ||
| Line 52: | Line 58: | ||
|          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
|          </tr> |          </tr> | ||
|          <tr valign=top><td colspan=2 |          <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr>  | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 129]]</nowiki></pre></td></tr> | |||
|          </table>  | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| < |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, Alternating, 129]]</nowiki></pre></td></tr> | ||
| <td>< | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[14, 6, 15, 5], X[20, 7, 21, 8],  | ||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[11, Alternating, 129]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[14, 6, 15, 5], X[20, 7, 21, 8],  | |||
|   X[16, 9, 17, 10], X[2, 11, 3, 12], X[18, 13, 19, 14],  |   X[16, 9, 17, 10], X[2, 11, 3, 12], X[18, 13, 19, 14],  | ||
|   X[22, 16, 1, 15], X[12, 17, 13, 18], X[6, 19, 7, 20], X[8, 21, 9, 22]]</nowiki></ |   X[22, 16, 1, 15], X[12, 17, 13, 18], X[6, 19, 7, 20], X[8, 21, 9, 22]]</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 129]]</nowiki></pre></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -1, 3, -10, 4, -11, 5, -2, 6, -9, 7, -3, 8, -5, 9,  | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[11, Alternating, 129]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -6, 2, -1, 3, -10, 4, -11, 5, -2, 6, -9, 7, -3, 8, -5, 9,  | |||
|   -7, 10, -4, 11, -8]</nowiki></ |   -7, 10, -4, 11, -8]</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 129]]</nowiki></pre></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, -2, 3, -2, -2, -2, 3, -2, -1, -2, 3, -2}]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
|          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 129]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:K11a129_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[6]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> | |||
| <td>< |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 129]][t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -4   6    15   22              2      3    4 | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[Knot[11, Alternating, 129]]</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 129]]]</nowiki></code></td></tr> | |||
| <tr align=left><td></td><td>[[Image:K11a129_ML.gif]]</td></tr><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[11, Alternating, 129]][t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -4   6    15   22              2      3    4 | |||
| 25 + t   - -- + -- - -- - 22 t + 15 t  - 6 t  + t | 25 + t   - -- + -- - -- - 22 t + 15 t  - 6 t  + t | ||
|             3    2   t |             3    2   t | ||
|            t    t</nowiki></ |            t    t</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 129]][z]</nowiki></pre></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     4      6    8 | |||
|          <table><tr align=left> | |||
| 1 - z  + 2 z  + z</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> | |||
| <td>< |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 129]}</nowiki></pre></td></tr> | |||
| <tr align=left> | |||
| < |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[11, Alternating, 129]], KnotSignature[Knot[11, Alternating, 129]]}</nowiki></pre></td></tr> | ||
| <td>< | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{113, -4}</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, Alternating, 129]][q]</nowiki></pre></td></tr> | |||
| 1 - z  + 2 z  + z</nowiki></code></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -10   3    7    12   15   18   18   15   12   7 | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[11, Alternating, 129]}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[11, Alternating, 129]], KnotSignature[Knot[11, Alternating, 129]]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{113, -4}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>J=Jones[Knot[11, Alternating, 129]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -10   3    7    12   15   18   18   15   12   7 | |||
| 4 + q    - -- + -- - -- + -- - -- + -- - -- + -- - - - q | 4 + q    - -- + -- - -- + -- - -- + -- - -- + -- - - - q | ||
|             9    8    7    6    5    4    3    2   q |             9    8    7    6    5    4    3    2   q | ||
|            q    q    q    q    q    q    q    q</nowiki></ |            q    q    q    q    q    q    q    q</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 129]}</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[11, Alternating, 129]}</nowiki></code></td></tr> | |||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 129]][q]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| < | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -30    2     3     -20    3     2     2     3     5     -8   2 | ||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[11, Alternating, 129]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -30    2     3     -20    3     2     2     3     5     -8   2 | |||
| 2 + q    + --- - --- + q    - --- - --- + --- - --- + --- - q   + -- +  | 2 + q    + --- - --- + q    - --- - --- + --- - --- + --- - q   + -- +  | ||
|             24    22           18    16    14    12    10          6 |             24    22           18    16    14    12    10          6 | ||
| Line 158: | Line 103: | ||
|   -- - q   - q |   -- - q   - q | ||
|    4 |    4 | ||
|   q</nowiki></ |   q</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 129]][a, z]</nowiki></pre></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  2      4      6      8    3        5        7        9        2  2 | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[11, Alternating, 129]][a, z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>  2      4      6      8    3        5        7        9        2  2 | |||
| -a  + 3 a  + 5 a  + 2 a  + a  z - 3 a  z - 9 a  z - 5 a  z - 4 a  z  -  | -a  + 3 a  + 5 a  + 2 a  + a  z - 3 a  z - 9 a  z - 5 a  z - 4 a  z  -  | ||
| Line 187: | Line 127: | ||
|      3  9       5  9      7  9      4  10      6  10 |      3  9       5  9      7  9      4  10      6  10 | ||
|   5 a  z  + 11 a  z  + 6 a  z  + 2 a  z   + 2 a  z</nowiki></ |   5 a  z  + 11 a  z  + 6 a  z  + 2 a  z   + 2 a  z</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 129]], Vassiliev[3][Knot[11, Alternating, 129]]}</nowiki></pre></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 3}</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| < |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 129]][q, t]</nowiki></pre></td></tr> | ||
| <td>< | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5    8      1        2        1        5        2        7 | ||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 3}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[11, Alternating, 129]][q, t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5    8      1        2        1        5        2        7 | |||
| -- + -- + ------ + ------ + ------ + ------ + ------ + ------ +  | -- + -- + ------ + ------ + ------ + ------ + ------ + ------ +  | ||
|  5    3    21  8    19  7    17  7    17  6    15  6    15  5 |  5    3    21  8    19  7    17  7    17  6    15  6    15  5 | ||
| Line 215: | Line 145: | ||
|   ---- + --- + --- + -- + 3 q t  + q  t |   ---- + --- + --- + -- + 3 q t  + q  t | ||
|    5      3     q    q |    5      3     q    q | ||
|   q  t   q</nowiki></ |   q  t   q</nowiki></pre></td></tr> | ||
| </table> }} |          </table> }} | ||
Revision as of 17:11, 2 September 2005
|  |  | 
|  (Knotscape image) | See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. | 
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X14,6,15,5 X20,7,21,8 X16,9,17,10 X2,11,3,12 X18,13,19,14 X22,16,1,15 X12,17,13,18 X6,19,7,20 X8,21,9,22 | 
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -11, 5, -2, 6, -9, 7, -3, 8, -5, 9, -7, 10, -4, 11, -8 | 
| Dowker-Thistlethwaite code | 4 10 14 20 16 2 18 22 12 6 8 | 
| A Braid Representative | 
 | ||||
| A Morse Link Presentation |   | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["K11a129"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 113, -4 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["K11a129"]; | 
| In[4]:= | {A = Alexander[K][t], J = Jones[K][q]} | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[4]= | { , } | 
| In[5]:= | DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K] | 
| KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`. | 
| KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005. | 
| Out[5]= | {} | 
| In[6]:= | DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots11`. | 
| Out[6]= | {} | 
Vassiliev invariants
| V2 and V3: | (0, 3) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of K11a129. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages. See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. | 
 | 







