K11a130

From Knot Atlas
Jump to navigationJump to search

K11a129.gif

K11a129

K11a131.gif

K11a131

K11a130.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a130 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X14,6,15,5 X20,7,21,8 X16,9,17,10 X2,11,3,12 X18,13,19,14 X22,16,1,15 X12,17,13,18 X8,19,9,20 X6,21,7,22
Gauss code 1, -6, 2, -1, 3, -11, 4, -10, 5, -2, 6, -9, 7, -3, 8, -5, 9, -7, 10, -4, 11, -8
Dowker-Thistlethwaite code 4 10 14 20 16 2 18 22 12 8 6
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11a130 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a130/ThurstonBennequinNumber
Hyperbolic Volume 15.9906
A-Polynomial See Data:K11a130/A-polynomial

[edit Notes for K11a130's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 2

[edit Notes for K11a130's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^3-12 t^2+29 t-37+29 t^{-1} -12 t^{-2} +2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^6-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 123, -2 }
Jones polynomial [math]\displaystyle{ -q^2+4 q-8+14 q^{-1} -17 q^{-2} +20 q^{-3} -20 q^{-4} +16 q^{-5} -12 q^{-6} +7 q^{-7} -3 q^{-8} + q^{-9} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^2 a^8+a^8-2 z^4 a^6-3 z^2 a^6-a^6+z^6 a^4+z^4 a^4-z^2 a^4-2 a^4+z^6 a^2+2 z^4 a^2+3 z^2 a^2+3 a^2-z^4-z^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^6 a^{10}-3 z^4 a^{10}+2 z^2 a^{10}+3 z^7 a^9-8 z^5 a^9+5 z^3 a^9-z a^9+5 z^8 a^8-13 z^6 a^8+11 z^4 a^8-6 z^2 a^8+a^8+5 z^9 a^7-11 z^7 a^7+10 z^5 a^7-8 z^3 a^7+3 z a^7+2 z^{10} a^6+6 z^8 a^6-26 z^6 a^6+32 z^4 a^6-15 z^2 a^6+a^6+11 z^9 a^5-27 z^7 a^5+31 z^5 a^5-20 z^3 a^5+8 z a^5+2 z^{10} a^4+9 z^8 a^4-27 z^6 a^4+26 z^4 a^4-6 z^2 a^4-2 a^4+6 z^9 a^3-6 z^7 a^3+2 z^5 a^3-4 z^3 a^3+4 z a^3+8 z^8 a^2-11 z^6 a^2+2 z^4 a^2+3 z^2 a^2-3 a^2+7 z^7 a-10 z^5 a+2 z^3 a+4 z^6-6 z^4+2 z^2+z^5 a^{-1} -z^3 a^{-1} }[/math]
The A2 invariant Data:K11a130/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a130/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a78,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-1, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -\frac{254}{3} }[/math] [math]\displaystyle{ \frac{14}{3} }[/math] [math]\displaystyle{ -128 }[/math] [math]\displaystyle{ -\frac{160}{3} }[/math] [math]\displaystyle{ -\frac{256}{3} }[/math] [math]\displaystyle{ -32 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{1016}{3} }[/math] [math]\displaystyle{ -\frac{56}{3} }[/math] [math]\displaystyle{ \frac{43409}{30} }[/math] [math]\displaystyle{ \frac{1102}{15} }[/math] [math]\displaystyle{ \frac{34258}{45} }[/math] [math]\displaystyle{ \frac{367}{18} }[/math] [math]\displaystyle{ \frac{2129}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a130. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          3 3
1         51 -4
-1        93  6
-3       96   -3
-5      118    3
-7     99     0
-9    711      -4
-11   59       4
-13  27        -5
-15 15         4
-17 2          -2
-191           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a129.gif

K11a129

K11a131.gif

K11a131