L9a2: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice   | 
  <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
  <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
  <!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
  <!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
{{Link Page|  | 
  {{Link Page|  | 
||
n = 9 |  | 
  n = 9 |  | 
||
t =   | 
  t = a |  | 
||
k = 2 |  | 
  k = 2 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,5,-3:4,-1,2,-5,6,-8,7,-4,9,-2,3,-6,8,-7/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,5,-3:4,-1,2,-5,6,-8,7,-4,9,-2,3,-6,8,-7/goTop.html |  | 
||
braid_table     = <table cellspacing=0 cellpadding=0 border=0>  | 
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>  | 
|||
| ⚫ | |||
khovanov_table  = <table border=1>  | 
  khovanov_table  = <table border=1>  | 
||
<tr align=center>  | 
  <tr align=center>  | 
||
| Line 42: | Line 47: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2  | 
           <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[9, Alternating, 2]]</nowiki></pre></td></tr>  | 
|||
         </table>   | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[9, Alternating, 2]]]</nowiki></pre></td></tr>  | 
||
<td><  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[12, 6, 13, 5],   | 
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>9</nowiki></code></td></tr>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[9, Alternating, 2]]]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[12, 6, 13, 5],   | 
  |||
  X[8, 4, 9, 3], X[16, 10, 17, 9], X[18, 12, 5, 11], X[10, 18, 11, 17],   | 
    X[8, 4, 9, 3], X[16, 10, 17, 9], X[18, 12, 5, 11], X[10, 18, 11, 17],   | 
||
  X[2, 14, 3, 13]]</nowiki></  | 
    X[2, 14, 3, 13]]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>  | 
  |||
| ⚫ | |||
   -7}]</nowiki></  | 
     -7}]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, 2, -1, 2, -1, 2, 2, 2, 2}]</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[9, Alternating, 2]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L9a2_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>  | 
  |||
<td><  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[9, Alternating, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>  | 
|||
<tr align=left><td></td><td>[[Image:L9a2_ML.gif]]</td></tr><tr align=left>  | 
  |||
<  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[9, Alternating, 2]][q]</nowiki></pre></td></tr>  | 
||
<td><  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(3/2)      3                     3/2      5/2      7/2      9/2  | 
||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[9, Alternating, 2]]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -(3/2)      3                     3/2      5/2      7/2      9/2  | 
  |||
q       - ------- + 3 Sqrt[q] - 6 q    + 6 q    - 7 q    + 6 q    -   | 
  q       - ------- + 3 Sqrt[q] - 6 q    + 6 q    - 7 q    + 6 q    -   | 
||
          Sqrt[q]  | 
            Sqrt[q]  | 
||
     11/2      13/2    15/2  | 
       11/2      13/2    15/2  | 
||
  4 q     + 3 q     - q</nowiki></  | 
    4 q     + 3 q     - q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
  |||
| ⚫ | |||
1 - q   + q   + 3 q  + 4 q  + 2 q  + 4 q  - q   - 2 q   - 2 q   - q   +   | 
  1 - q   + q   + 3 q  + 4 q  + 2 q  + 4 q  - q   - 2 q   - 2 q   - q   +   | 
||
   22  | 
     22  | 
||
  q</nowiki></  | 
    q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
  |||
| ⚫ | |||
 1      3      2    z    z    3 z    7 z    3 z    z    5 z    z    z  | 
   1      3      2    z    z    3 z    7 z    3 z    z    5 z    z    z  | 
||
---- - ---- + --- - -- + -- - ---- + ---- - ---- - -- + ---- - -- + --  | 
  ---- - ---- + --- - -- + -- - ---- + ---- - ---- - -- + ---- - -- + --  | 
||
 5      3     a z    5    3     5      3     a      5     3    a     3  | 
   5      3     a z    5    3     5      3     a      5     3    a     3  | 
||
a  z   a  z         a    a     a      a            a     a          a</nowiki></  | 
  a  z   a  z         a    a     a      a            a     a          a</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
  |||
| ⚫ | |||
  -6   3    3     1      3      2    2 z   3 z   z    2   2 z    2 z  | 
    -6   3    3     1      3      2    2 z   3 z   z    2   2 z    2 z  | 
||
-a   - -- - -- + ---- + ---- + --- + --- + --- + - - z  + ---- + ---- -   | 
  -a   - -- - -- + ---- + ---- + --- + --- + --- + - - z  + ---- + ---- -   | 
||
| Line 153: | Line 109: | ||
  ---- - ---- - ----  | 
    ---- - ---- - ----  | 
||
   a       4      2  | 
     a       4      2  | 
||
          a      a</nowiki></  | 
            a      a</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
  |||
| ⚫ | |||
   2      4     1      -2     2     1   2 q       4        6  | 
     2      4     1      -2     2     1   2 q       4        6  | 
||
5 q  + 3 q  + ----- + t   + ----- + - + ---- + 3 q  t + 3 q  t +   | 
  5 q  + 3 q  + ----- + t   + ----- + - + ---- + 3 q  t + 3 q  t +   | 
||
| Line 170: | Line 121: | ||
   12  5      14  5    16  6  | 
     12  5      14  5    16  6  | 
||
  q   t  + 2 q   t  + q   t</nowiki></  | 
    q   t  + 2 q   t  + q   t</nowiki></pre></td></tr>  | 
||
</table> }}  | 
           </table> }}  | 
||
Revision as of 17:38, 2 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
| 
 L9a2 is in the Rolfsen table of links.  | 
Link Presentations
[edit Notes on L9a2's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X12,6,13,5 X8493 X16,10,17,9 X18,12,5,11 X10,18,11,17 X2,14,3,13 | 
| Gauss code | {1, -9, 5, -3}, {4, -1, 2, -5, 6, -8, 7, -4, 9, -2, 3, -6, 8, -7} | 
| A Braid Representative | ||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | 3 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



