A Sample KnotTheory` Session: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 7: | Line 7: | ||
<!--$$<< KnotTheory`$$--> |
<!--$$<< KnotTheory`$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
<tt><font color=blue>In[ |
<tt><font color=blue>In[1]:=</font></tt><code> << KnotTheory`</code> |
||
<tt>Loading KnotTheory` (version of September 14, 2005, 13:37:36)...</tt> |
<tt>Loading KnotTheory` (version of September 14, 2005, 13:37:36)...</tt> |
||
Line 24: | Line 24: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 2 | |
||
in = <nowiki>K = Knot[8, 17]; |
in = <nowiki>K = Knot[8, 17]; |
||
K11 = Knot[11, Alternating, 231]; |
K11 = Knot[11, Alternating, 231]; |
||
Line 36: | Line 36: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 3 | |
||
in = <nowiki>PD[K]</nowiki> | |
in = <nowiki>PD[K]</nowiki> | |
||
out= <nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14], |
out= <nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14], |
||
Line 46: | Line 46: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 4 | |
||
in = <nowiki>{GaussCode[K], GaussCode[L]}</nowiki> | |
in = <nowiki>{GaussCode[K], GaussCode[L]}</nowiki> | |
||
out= <nowiki>{GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7], |
out= <nowiki>{GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7], |
||
Line 58: | Line 58: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 5 | |
||
in = <nowiki>DTCode[K]</nowiki> | |
in = <nowiki>DTCode[K]</nowiki> | |
||
out= <nowiki>DTCode[6, 8, 12, 14, 4, 16, 2, 10]</nowiki>}} |
out= <nowiki>DTCode[6, 8, 12, 14, 4, 16, 2, 10]</nowiki>}} |
||
Line 64: | Line 64: | ||
<!--$$br = BR[K]$$--> |
<!--$$br = BR[K]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 6 | |
|||
in = <nowiki>br = BR[K]</nowiki> | |
|||
out= <nowiki>BR[3, {-1, -1, 2, -1, 2, -1, 2, 2}]</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Show[BraidPlot[br]]$$--> |
<!--$$Show[BraidPlot[br]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{Graphics| |
|||
n = 7 | |
|||
in = <nowiki>Show[BraidPlot[br]]</nowiki> | |
|||
img= A_Sample_KnotTheory%60_Session_Out_7.gif | |
|||
out= <nowiki>-Graphics-</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$${First[br], Crossings[br], BraidIndex[K]}$$--> |
<!--$${First[br], Crossings[br], BraidIndex[K]}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 8 | |
|||
in = <nowiki>{First[br], Crossings[br], BraidIndex[K]}</nowiki> | |
|||
out= <nowiki>{3, 8, 3}</nowiki>}} |
|||
<!--END--> |
<!--END--> |
Revision as of 14:06, 18 September 2005
Setup
The first step is to load KnotTheory` as in Setup:
In[1]:= << KnotTheory`
Loading KnotTheory` (version of September 14, 2005, 13:37:36)...
8_17 |
K11a231 |
L8n6 |
T(7,5) |
Let us now introduce the four star knots that will accompany us throughout this session:
In[2]:=
|
K = Knot[8, 17];
K11 = Knot[11, Alternating, 231];
L = Link[8, NonAlternating, 6];
TK = TorusKnot[7,5];
|
Presentations
In[3]:=
|
PD[K]
|
Out[3]=
|
PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14],
X[12, 5, 13, 6], X[4, 9, 5, 10], X[16, 12, 1, 11], X[10, 16, 11, 15]]
|
In[4]:=
|
{GaussCode[K], GaussCode[L]}
|
Out[4]=
|
{GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7],
GaussCode[{1, -7, 2, -8}, {-5, 4, -6, 3},
{7, -1, -4, 5, 8, -2, -3, 6}]}
|
In[5]:=
|
DTCode[K]
|
Out[5]=
|
DTCode[6, 8, 12, 14, 4, 16, 2, 10]
|
In[6]:=
|
br = BR[K]
|
Out[6]=
|
BR[3, {-1, -1, 2, -1, 2, -1, 2, 2}]
|
In[7]:=
|
Show[BraidPlot[br]]
|
File:A Sample KnotTheory` Session Out 7.gif | |
Out[7]=
|
-Graphics-
|
In[8]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
Out[8]=
|
{3, 8, 3}
|