A Sample KnotTheory` Session: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 127: | Line 127: | ||
<!--$$alex = Alexander[K][t]$$--> |
<!--$$alex = Alexander[K][t]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 12 | |
|||
in = <nowiki>alex = Alexander[K][t]</nowiki> | |
|||
out= <nowiki> -3 4 8 2 3 |
|||
11 - t + -- - - - 8 t + 4 t - t |
|||
2 t |
|||
t</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Conway[K][t]$$--> |
<!--$$Conway[K][t]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 13 | |
|||
in = <nowiki>Conway[K][t]</nowiki> | |
|||
out= <nowiki> 2 4 6 |
|||
1 - t - 2 t - t</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 135: | Line 149: | ||
<!--$$Select[AllKnots[], (alex === Alexander[#][t])&]$$--> |
<!--$$Select[AllKnots[], (alex === Alexander[#][t])&]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 14 | |
|||
in = <nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki> | |
|||
out= <nowiki>{Knot[8, 17], Knot[11, NonAlternating, 53]}</nowiki>}} |
|||
<!--END--> |
<!--END--> |
Revision as of 14:27, 18 September 2005
Setup
The first step is to load KnotTheory` as in the Setup section:
In[1]:= << KnotTheory`
Loading KnotTheory` (version of September 14, 2005, 13:37:36)...
8_17 |
K11a231 |
L8n6 |
T(7,5) |
Let us now introduce the four star knots that will accompany us throughout this session:
In[2]:=
|
K = Knot[8, 17];
K11 = Knot[11, Alternating, 231];
L = Link[8, NonAlternating, 6];
TK = TorusKnot[7,5];
|
Presentations
In[3]:=
|
PD[K]
|
Out[3]=
|
PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14],
X[12, 5, 13, 6], X[4, 9, 5, 10], X[16, 12, 1, 11], X[10, 16, 11, 15]]
|
In[4]:=
|
{GaussCode[K], GaussCode[L]}
|
Out[4]=
|
{GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7],
GaussCode[{1, -7, 2, -8}, {-5, 4, -6, 3},
{7, -1, -4, 5, 8, -2, -3, 6}]}
|
In[5]:=
|
DTCode[K]
|
Out[5]=
|
DTCode[6, 8, 12, 14, 4, 16, 2, 10]
|
In[6]:=
|
br = BR[K]
|
Out[6]=
|
BR[3, {-1, -1, 2, -1, 2, -1, 2, 2}]
|
In[7]:=
|
Show[BraidPlot[br]]
|
Out[7]=
|
-Graphics-
|
In[8]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
Out[8]=
|
{3, 8, 3}
|
In[9]:=
|
Show[DrawMorseLink[K]]
|
Out[9]=
|
-Graphics-
|
In[10]:=
|
Show[DrawMorseLink[L]]
|
Out[10]=
|
-Graphics-
|
Three Dimensional Invariants
In[11]:=
|
(#[K]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}
|
Out[11]=
|
{NegativeAmphicheiral, 1, 3, 3, 4, 1}
|
Polynomial Invariants
The Alexander-Conway Polynomial
In[12]:=
|
alex = Alexander[K][t]
|
Out[12]=
|
-3 4 8 2 3
11 - t + -- - - - 8 t + 4 t - t
2 t
t
|
In[13]:=
|
Conway[K][t]
|
Out[13]=
|
2 4 6
1 - t - 2 t - t
|
"Similar" Knots (within the Atlas)
In[14]:=
|
Select[AllKnots[], (alex === Alexander[#][t])&]
|
Out[14]=
|
{Knot[8, 17], Knot[11, NonAlternating, 53]}
|