Khovanov Homology: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
mNo edit summary
Line 1: Line 1:
{{Manual TOC Sidebar}}
{{Manual TOC Sidebar}}


The Khovanov Homology <math>\operatorname{\it KH}(L)</math> of a knot or a link <math>L</math>, also known as Khovanov's categorification of the Jones polynomial of <math>L</math>, was defined by Khovanov in {{ref|Khovanov1}} (also check {{ref|Bar-Natan1}}), where the notation is closer to the notation used here). It is a graded homology theory; each homology group <math>\operatorname{\it KH}^r(L)</math> is in itself a direct sum <math>\bigoplus_j\operatorname{\it KH}^r_j(L)</math> of homogeneous components. Over a field on can form the two-variable "Poincar'e polynomial" <math>\operatorname{\it Kh}(L)</math> (which deserves the name "the Khovanov polynomial of $L$"),
The Khovanov Homology <math>\operatorname{\it KH}(L)</math> of a knot or a link <math>L</math>, also known as Khovanov's categorification of the Jones polynomial of <math>L</math>, was defined by Khovanov in {{ref|Khovanov1}} (also check {{ref|Bar-Natan1}}), where the notation is closer to the notation used here). It is a graded homology theory; each homology group <math>\operatorname{\it KH}^r(L)</math> is in itself a direct sum <math>\bigoplus_j\operatorname{\it KH}^r_j(L)</math> of homogeneous components. Over a field on can form the two-variable "Poincar'e polynomial" <math>\operatorname{\it Kh}(L)</math> (which deserves the name "the Khovanov polynomial of L"),


<center><math>\operatorname{\it Kh}(L)(q,t) := \sum_{r,j}t^rq^j\dim\operatorname{\it KH}^r_j(L)</math>.</center>
<center><math>\operatorname{\it Kh}(L)(q,t) := \sum_{r,j}t^rq^j\dim\operatorname{\it KH}^r_j(L)</math>.</center>
Line 23: Line 23:
in = <nowiki>kh = Kh[Knot[5, 1]][q, t]</nowiki> |
in = <nowiki>kh = Kh[Knot[5, 1]][q, t]</nowiki> |
out= <nowiki> -5 -3 1 1 1 1
out= <nowiki> -5 -3 1 1 1 1
q + q</nowiki>
q + q + ------ + ------ + ------ + -----
15 5 11 4 11 3 7 2
q t q t q t q t</nowiki>}}
<!--END-->

The Euler characteristic of the Khovanov Homology <math>\operatorname{\it KH}(L)</math> is (up to normalization) the Jones polynomial <math>J(L)</math> of <math>L</math>. Precisely,

<center><math>\operatorname{\it Kh}(L)(q, -1) = {\hat J}(L)(q) := (q+q^{-1})J(L)(q^2)</math>.</center>

Let us verify this in the case of [[5_1]]:

<!--$${kh /. t -> -1, Expand[(q+1/q)Jones[Knot[5, 1]][q^2]]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 4 |
in = <nowiki>{kh /. t -> -1, Expand[(q+1/q)Jones[Knot[5, 1]][q^2]]}</nowiki> |
out= <nowiki> -15 -7 -5 -3 -15 -7 -5 -3
{-q + q + q + q , -q + q + q + q }</nowiki>}}
<!--END-->

{{Knot Image Pair|5_1|gif|10_132|gif}}

Khovanov's homology is a strictly stronger invariant than the Jones polynomial. Indeed, <math>J(5_1)=J(10_{132})</math> though <math>\operatorname{\it Kh}(5_1)\neq\operatorname{\it Kh}(10_{132})</math>:

<!--$${
Jones[Knot[5, 1]] === Jones[Knot[10, 132]],
Kh[Knot[5, 1]] === Kh[Knot[10, 132]]
}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 5 |
in = <nowiki>{
Jones[Knot[5, 1]] === Jones[Knot[10, 132]],
Kh[Knot[5, 1]] === Kh[Knot[10, 132]]
}</nowiki> |
out= <nowiki>{True, False}</nowiki>}}
<!--END-->

The algorithm presently used by <code>KnotTheory`</code> is an efficient algorithm modeled on the Kauffman bracket algorithm of [[The_Jones_Polynomial#How_is_the_Jones_polynomial_computed.3F|The Jones Polynomial]], as explained in {{ref|Bar-Natan3}} (which follows {{ref|Bar-Natan2}}). Currently, two implementations of this algorithm are available:

* <tt>FastKh</tt>: My original implementation, written in Mathematica in the winter of 2005. This implementation can be explicitly invoked using the syntax <code>Kh[L, Program -> "FastKh"][q, t]</code> or by changing the default behaviour of <code>Kh</code> by evaluating <code>SetOptions[Kh, Program -> "FastKh"]</code>.
* <tt>JavaKh</tt>: In the summer of 2005 Jeremy Green re-implemented the algorithm in java '''(java 1.5 required!)''' with much further care to the details, leading to an improvemnet factor of several thousands for large knots/links. This implementation is the default. It can also be explicitly invoked from within Mathematica using the syntax <code>Kh[L, Program -> "JavaKh"][q, t]</code>.

<!--$$Options[Kh]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 6 |
in = <nowiki>Options[Kh]</nowiki> |
out= <nowiki>{ExpansionOrder -> Automatic, Program -> JavaKh, Modulus -> 0,
JavaOptions -> }</nowiki>}}
<!--END-->

<tt>JavaKh</tt> takes an additional option, <code>Modulus</code>, which sets the characteristic of the ground field for the homology computations to <math>0</math> or to a prime <math>p</math>. Thus for example, the following four <tt>In</tt> lines imply that the Khovanov homology of the torus knot [[T(6,5)]] has both 3 torsion and 5 torsion, but no 7 torsion:

<!--$$T65 = TorusKnot[6, 5]; kh = Kh[T65][q, t];$$-->
<!--Robot Land, no human edits to "END"-->
{{In|
n = 7 |
in = <nowiki>T65 = TorusKnot[6, 5]; kh = Kh[T65][q, t];</nowiki>}}
<!--END-->

<!--$(* Cheat: *)
Kh[TorusKnot[6, 5], Modulus->3] = Function @@ {
kh + q^43*t^13 + q^43*t^14 /. {q->#1, t->#2}
};
Kh[TorusKnot[6, 5], Modulus->5] = Function @@ {
kh + q^35*t^10 + q^35*t^11 + q^39*t^11 + q^39*t^12 /. {q->#1, t->#2}
};
Kh[TorusKnot[6, 5], Modulus->7] = Function @@ {kh /. {q->#1, t->#2}};
$--><!--END-->
<!--$$Kh[T65, Modulus -> 3][q, t] - kh$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 8 |
in = <nowiki>Kh[T65, Modulus -> 3][q, t] - kh</nowiki> |
out= <nowiki> 43 13 43 14
q t + q t</nowiki>}}
<!--END-->

<!--$$Kh[T65, Modulus -> 5][q, t] - kh$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 9 |
in = <nowiki>Kh[T65, Modulus -> 5][q, t] - kh</nowiki> |
out= <nowiki> 35 10 35 11 39 11 39 12
q t + q t + q t + q t</nowiki>}}
<!--END-->

<!--$$Kh[T65, Modulus -> 7][q, t] - kh$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 10 |
in = <nowiki>Kh[T65, Modulus -> 7][q, t] - kh</nowiki> |
out= <nowiki>0</nowiki>}}
<!--END-->

{{Knot Image|T(6,5)|jpg}}

The following further example is a bit tougher. It takes my computer nearly an hour and some 256Mb of memory to find that the Khovanov homology of the 48-crossing torus knot T(8,7) has 3, 5 and 7 torsion but no 11 torsion:

<!--$$?JavaOptions$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 11 |
in = <nowiki>JavaOptions</nowiki> |
out= <nowiki>JavaOptions is an option to Kh. Kh[L, Program -> "JavaKh", JavaOptions -> jopts] calls java with options jopts. Thus for example, JavaOptions -> "-Xmx256m" sets the maximum java heap size to 256MB - useful for large computations.</nowiki>}}
<!--END-->

<!--$$SetOptions[Kh, JavaOptions -> "-Xmx256m"];$$-->
<!--Robot Land, no human edits to "END"-->
{{In|
n = 12 |
in = <nowiki>SetOptions[Kh, JavaOptions -> "-Xmx256m"];</nowiki>}}
<!--END-->

<!--$(* Cheat: *)
Kh[TorusKnot[8, 7]] = Function @@ {
(
q^41 + q^43 + q^45*t^2 + q^49*t^3 + q^47*t^4 + q^49*t^4 + q^51*t^5 +
q^53*t^5 + q^49*t^6 + q^51*t^6 + q^53*t^7 + q^55*t^7 + q^51*t^8 +
2*q^53*t^8 + q^55*t^9 + 2*q^57*t^9 + q^53*t^10 + 2*q^55*t^10 +
q^57*t^11 + 3*q^59*t^11 + q^55*t^12 + 3*q^57*t^12 + q^59*t^12 +
q^63*t^12 + q^59*t^13 + 4*q^61*t^13 + q^63*t^13 + 2*q^59*t^14 +
q^61*t^14 + q^65*t^14 + 4*q^63*t^15 + 2*q^65*t^15 + 2*q^61*t^16 +
2*q^63*t^16 + 2*q^67*t^16 + q^69*t^16 + 3*q^65*t^17 + 3*q^67*t^17 +
q^63*t^18 + 2*q^65*t^18 + q^69*t^18 + q^71*t^18 + 2*q^67*t^19 +
3*q^69*t^19 + q^65*t^20 + 2*q^67*t^20 + q^71*t^20 + q^73*t^20 +
q^69*t^21 + 3*q^71*t^21 + q^69*t^22 + q^75*t^22 + 2*q^73*t^23 +
q^71*t^24 + q^73*t^24 + q^77*t^24 + q^75*t^25 + q^77*t^25
) /. {q->#1, t->#2}
};
$--><!--END-->
<!--$$T87 = TorusKnot[8, 7]; kh = Kh[T87][q, t];$$-->
<!--Robot Land, no human edits to "END"-->
{{In|
n = 13 |
in = <nowiki>T87 = TorusKnot[8, 7]; kh = Kh[T87][q, t];</nowiki>}}
<!--END-->

<!--$(* Cheat: *)
Kh[TorusKnot[8, 7], Modulus->3] = Function @@ {
kh + q^79*t^25 + q^79*t^26 /. {q->#1, t->#2}
};
Kh[TorusKnot[8, 7], Modulus->5] = Function @@ {
kh + (
q^61*t^11 + q^61*t^12 + q^73*t^21 + q^73*t^22 + q^75*t^23 +
q^75*t^24 + q^79*t^24 + q^79*t^25
) /. {q->#1, t->#2}
};
Kh[TorusKnot[8, 7], Modulus->7] = Function @@ {
kh + (
q^61*t^14 + q^61*t^15 + q^69*t^20 + q^69*t^21 + q^73*t^21 +
q^71*t^22 + q^73*t^22 + q^71*t^23 + q^75*t^23 + q^75*t^24
) /. {q->#1, t->#2}
};
Kh[TorusKnot[8, 7], Modulus->11] = Function @@ {kh /. {q->#1, t->#2}};
$--><!--END-->
<!--$$Factor[Kh[T87, Modulus -> 3][q, t] - kh]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 14 |
in = <nowiki>Factor[Kh[T87, Modulus -> 3][q, t] - kh]</nowiki> |
out= <nowiki> 79 25
q t (1 + t)</nowiki>}}
<!--END-->

<!--$$Factor[Kh[T87, Modulus -> 5][q, t] - kh]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 15 |
in = <nowiki>Factor[Kh[T87, Modulus -> 5][q, t] - kh]</nowiki> |
out= <nowiki> 61 11 12 10 14 12 18 13
q t (1 + t) (1 + q t + q t + q t )</nowiki>}}
<!--END-->

<!--$$Factor[Kh[T87, Modulus -> 7][q, t] - kh]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 16 |
in = <nowiki>Factor[Kh[T87, Modulus -> 7][q, t] - kh]</nowiki> |
out= <nowiki> 61 14 8 6 12 7 10 8 14 9
q t (1 + t) (1 + q t + q t + q t + q t )</nowiki>}}
<!--END-->

<!--$$Factor[Kh[T87, Modulus -> 11][q, t] - kh]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 17 |
in = <nowiki>Factor[Kh[T87, Modulus -> 11][q, t] - kh]</nowiki> |
out= <nowiki>0</nowiki>}}
<!--END-->

<tt>JavaKh</tt> also works over the integers:

<!--$$?ZMod$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 18 |
in = <nowiki>ZMod</nowiki> |
out= <nowiki>ZMod[m] denotes the cyclic group Z/mZ. Thus if m=0 it is the infinite cyclic group Z and if m>0 it is the finite cyclic group with m elements. ZMod[m1, m2, ...] denotes the direct sum of ZMod[m1], ZMod[m2], ... .</nowiki>}}
<!--END-->

For example, the 22nd homology group over <math>{\mathbb Z}</math> of the torus knot T(8,7) at degree 73 is the 280 element torsion group <math>{\mathbb Z}_2\oplus{\mathbb Z}_4\oplus{\mathbb Z}_5\oplus{\mathbb Z}_7</math>:
<!--$(* Cheat: *)
Kh[TorusKnot[8, 7], Modulus->Null] = Function @@ {
q^73*t^22*ZMod[2, 4, 5, 7] /. {q->#1, t->#2}
};
$--><!--END-->

<!--$$Coefficient[Kh[T87, Modulus -> Null][q, t], t^22 * q^73]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 19 |
in = <nowiki>Coefficient[Kh[T87, Modulus -> Null][q, t], t^22 * q^73]</nowiki> |
out= <nowiki>ZMod[2, 4, 5, 7]</nowiki>}}
<!--END-->

T(8,7) is currently not on the Knot Atlas. Let us see what it looks like:

<!--$$Show[TubePlot[TorusKnot[8, 7]]]$$-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
n = 20 |
in = <nowiki>Show[TubePlot[TorusKnot[8, 7]]]</nowiki> |
img= Khovanov_Homology_Out_20.gif |
out= <nowiki>-Graphics3D-</nowiki>}}
<!--END-->

Finally, <tt>JavaKh</tt> may also be run outside of Mathematica, as the following example demonstrates:

drorbn@coxeter:.../KnotTheory: cd JavaKh
drorbn@coxeter:.../KnotTheory/JavaKh: java JavaKh
PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]]
"+ q^1t^0 + q^3t^0 + q^5t^2 + q^9t^3 "

(Type <tt>java JavaKh -help</tt> for some further help).

[[Image:Mikhail_Khovanov.jpg|thumb|320px|right|August 2002, Toronto: Mikhail Khovanov explaining his more recent paper {{ref|Khovanov2}}.]]

{{note|Bar-Natan1}} D. Bar-Natan, [http://www.math.toronto.edu/~drorbn/papers/Categorification/ ''On Khovanov's categorification of the Jones polynomial''], Algebraic and Geometric Topology '''2-16''' (2002) 337-370, {{arXiv|math.GT/0201043}}.

{{note|Bar-Natan2}} D. Bar-Natan, [http://www.math.toronto.edu/~drorbn/papers/Cobordism/ ''Khovanov's Homology for Tangles and Cobordisms''], Geometry and Topology '''9-33''' (2005) 1443-1499, {{arXiv|math.GT/0410495}}.

{{note|Bar-Natan3}} D. Bar-Natan, [http://www.math.toronto.edu/~drorbn/Talks/GWU-050213/index.html ''I've Computed Kh(T(9,5)) and I'm Happy''], talk given at Knots in Washington XX, George Washington University, February 2005.

{{note|Khovanov1}} M. Khovanov, ''A categorification of the Jones polynomial'', {{arXiv|math.QA/9908171}}.

{{note|Khovanov2}} M. Khovanov, ''An invariant of tangle cobordisms'', {{arXiv|math.QA/0207264}}.

See also [[A Khovanov homology bibliography]].

Revision as of 22:01, 10 November 2005


The Khovanov Homology of a knot or a link , also known as Khovanov's categorification of the Jones polynomial of , was defined by Khovanov in [Khovanov1] (also check [Bar-Natan1]), where the notation is closer to the notation used here). It is a graded homology theory; each homology group is in itself a direct sum of homogeneous components. Over a field on can form the two-variable "Poincar'e polynomial" (which deserves the name "the Khovanov polynomial of L"),

.

(For In[1] see Setup)

In[2]:= ?Kh
Kh[L][q, t] returns the Poincare polynomial of the Khovanov Homology of a knot/link L (over a field of characteristic 0) in terms of the variables q and t. Kh[L, Program -> prog] uses the program prog to perform the computation. The currently available programs are "FastKh", written in Mathematica by Dror Bar-Natan in the winter of 2005 and "JavaKh" (default), written in java (java 1.5 required!) by Jeremy Green in the summer of 2005. The java program is several thousand times faster than the Mathematica program, though java may not be available on some systems. "JavaKh" also takes the option "Modulus -> p" which changes the characteristic of the ground field to p. If p==0 JavaKh works over the rational numbers; if p==Null JavaKh works over Z (see ?ZMod for the output format).

Thus for example, here's the Khovanov polynomial of the knot 5_1:

{{InOut| n = 3 | in = kh = Kh[Knot[5, 1]][q, t] | out= -5 -3 1 1 1 1 q + q