3 1: Difference between revisions
| No edit summary | No edit summary | ||
| (23 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
| <!--                       WARNING! WARNING! WARNING! | |||
| The trefoil knot has only three crossings! | |||
| <!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! | |||
| <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | |||
| <mma-splice> | |||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> | |||
| <in> | |||
| <!--  --> | |||
| 3+4 | |||
| < | <!--  --> | ||
| {{Rolfsen Knot Page| | |||
| <out> | |||
| n = 3 | | |||
| </out> | |||
| k = 1 | | |||
| </mma-splice> | |||
| KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,3,-2,1,-3,2/goTop.html | | |||
| braid_table     = <table cellspacing=0 cellpadding=0 border=0> | |||
| {{Template:Basic Knot Invariants| | |||
| <tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> | |||
| image=[[Image:TrefoilKnot-01.png|right|Trefoil knot]]| | |||
| <tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> | |||
| simple_name=3_1| | |||
| </table> | | |||
| crossings=3| | |||
| braid_crossings = 3 | | |||
| jones_polynomial=<math>-q^{-4}+q^{-3}+q^{-1} </math> | |||
| braid_width     = 2 | | |||
| }} | |||
| braid_index     = 2 | | |||
| same_alexander  =  | | |||
| same_jones      =  | | |||
| khovanov_table  = <table border=1> | |||
| <tr align=center> | |||
| <td width=25.%><table cellpadding=0 cellspacing=0> | |||
|   <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | |||
| <tr><td>j</td><td> </td><td>\</td></tr> | |||
| </table></td> | |||
|   <td width=12.5%>-3</td    ><td width=12.5%>-2</td    ><td width=12.5%>-1</td    ><td width=12.5%>0</td    ><td width=25.%>χ</td></tr> | |||
| <tr align=center><td>-1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> | |||
| <tr align=center><td>-3</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>1</td></tr> | |||
| <tr align=center><td>-5</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td>1</td></tr> | |||
| <tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| </table> | | |||
| coloured_jones_2 = <math> q^{-2} + q^{-5} - q^{-7} + q^{-8} - q^{-9} - q^{-10} + q^{-11} </math> | | |||
| coloured_jones_3 = <math> q^{-3} + q^{-7} - q^{-10} + q^{-11} - q^{-13} - q^{-14} + q^{-15} - q^{-17} + q^{-19} + q^{-20} - q^{-21} </math> | | |||
| coloured_jones_4 = <math> q^{-4} + q^{-9} - q^{-13} + q^{-14} - q^{-17} - q^{-18} + q^{-19} - q^{-22} - q^{-23} +2 q^{-24} - q^{-28} +2 q^{-29} - q^{-32} - q^{-33} + q^{-34} </math> | | |||
| coloured_jones_5 = <math> q^{-5} + q^{-11} - q^{-16} + q^{-17} - q^{-21} - q^{-22} + q^{-23} - q^{-27} - q^{-28} + q^{-29} + q^{-30} - q^{-33} + q^{-35} + q^{-36} - q^{-39} + q^{-42} - q^{-44} - q^{-45} + q^{-48} + q^{-49} - q^{-50} </math> | | |||
| coloured_jones_6 = <math> q^{-6} + q^{-13} - q^{-19} + q^{-20} - q^{-25} - q^{-26} + q^{-27} - q^{-32} - q^{-33} + q^{-34} + q^{-36} - q^{-39} - q^{-40} +2 q^{-41} + q^{-43} - q^{-46} - q^{-47} +2 q^{-48} - q^{-53} -2 q^{-54} +2 q^{-55} - q^{-60} - q^{-61} +2 q^{-62} + q^{-64} - q^{-67} - q^{-68} + q^{-69} </math> | | |||
| coloured_jones_7 = <math> q^{-7} + q^{-15} - q^{-22} + q^{-23} - q^{-29} - q^{-30} + q^{-31} - q^{-37} - q^{-38} + q^{-39} + q^{-42} - q^{-45} - q^{-46} + q^{-47} + q^{-48} + q^{-50} - q^{-53} - q^{-54} + q^{-55} + q^{-56} + q^{-58} - q^{-59} - q^{-61} - q^{-62} + q^{-63} + q^{-66} - q^{-67} - q^{-69} - q^{-70} + q^{-71} + q^{-73} + q^{-74} - q^{-75} - q^{-78} + q^{-79} + q^{-81} + q^{-82} - q^{-83} - q^{-84} - q^{-86} + q^{-89} + q^{-90} - q^{-91} </math> | | |||
| computer_talk =  | |||
|          <table> | |||
|          <tr valign=top> | |||
|          <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
|          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
|          </tr> | |||
|          <tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> | |||
|          </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[3, 1]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 6, 4, 1], X[5, 2, 6, 3]]</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[3, 1]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 3, -2, 1, -3, 2]</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[3, 1]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 6, 2]</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[3, 1]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[2, {-1, -1, -1}]</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 3}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[3, 1]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[3, 1]]]</nowiki></code></td></tr> | |||
| <tr align=left><td></td><td>[[Image:3_1_ML.gif]]</td></tr><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[3, 1]]&) /@ { | |||
|                  SymmetryType, UnknottingNumber, ThreeGenus, | |||
|                  BridgeIndex, SuperBridgeIndex, NakanishiIndex | |||
|                 }</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 1, 2, 3, 1}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[3, 1]][t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     1 | |||
| -1 + - + t | |||
|      t</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[3, 1]][z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     2 | |||
| 1 + z</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[3, 1]}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[3, 1]], KnotSignature[Knot[3, 1]]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, -2}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[3, 1]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>  -4    -3   1 | |||
| -q   + q   + - | |||
|              q</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[3, 1]}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[3, 1]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>  -14    -12    -8   2     -4    -2 | |||
| -q    - q    + q   + -- + q   + q | |||
|                       6 | |||
|                      q</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[3, 1]][a, z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>   2    4    2  2 | |||
| 2 a  - a  + a  z</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[3, 1]][a, z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>    2    4    3      5      2  2    4  2 | |||
| -2 a  - a  + a  z + a  z + a  z  + a  z</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[3, 1]], Vassiliev[3][Knot[3, 1]]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -1}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[3, 1]][q, t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3   1     1       1 | |||
| q   + - + ----- + ----- | |||
|       q    9  3    5  2 | |||
|           q  t    q  t</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[3, 1], 2][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -11    -10    -9    -8    -7    -5    -2 | |||
| q    - q    - q   + q   - q   + q   + q</nowiki></code></td></tr> | |||
| </table>  }} | |||
Latest revision as of 18:01, 1 September 2005
|  |  | 
|  (KnotPlot image) | See the full Rolfsen Knot Table. Visit 3 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) | 
| 3_1 is also known as "The Trefoil Knot", after plants of the genus Trifolium, which have compound trifoliate leaves, and as the "Overhand Knot". See also T(3,2). | 
The trefoil is perhaps the easiest knot to find in "nature", and is topologically equivalent to the interlaced form of the common Christian and pagan "triquetra" symbol [12]:
|   Logo of Caixa Geral de Depositos, Lisboa [1] |   A knot consists of two harts in Kolam [2] | 
|   A Knotted Box [3] |   A trefoil near the Hollander York Gallery [4] | ||
|   A hagfish tying itself in a knot to escape capture. [5] |   A Kenyan Stone [6] | ||
|   The NeverEnding Story logo is a connected sum of two trefoils. [7] |   Mike Hutchings' Rope Trick [8] |   Thurston's Trefoil - Figure Eight Trick [9] | |
|   A Knotted Pencil [10] |   Banco Do Brasil [11] | 
Non-prime (compound) versions
For configurations of two trefoils along a closed loop which are prime, see 8_15 and 10_120. For a configuration of three trefoils along a closed loop which is prime, see K13a248. For a prime link consisting of two joined trefoils, see L10a108.
Knot presentations
| Planar diagram presentation | X1425 X3641 X5263 | 
| Gauss code | -1, 3, -2, 1, -3, 2 | 
| Dowker-Thistlethwaite code | 4 6 2 | 
| Conway Notation | [3] | 
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||
| 
 Length is 3, width is 2, Braid index is 2 |   |  [{5, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 1}] | 
[edit Notes on presentations of 3 1]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["3 1"]; | 
| In[4]:= | PD[K] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | X1425 X3641 X5263 | 
| In[5]:= | GaussCode[K] | 
| Out[5]= | -1, 3, -2, 1, -3, 2 | 
| In[6]:= | DTCode[K] | 
| Out[6]= | 4 6 2 | 
(The path below may be different on your system)
| In[7]:= | AppendTo[$Path, "C:/bin/LinKnot/"]; | 
| In[8]:= | ConwayNotation[K] | 
| Out[8]= | [3] | 
| In[9]:= | br = BR[K] | 
| KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051. | 
| Out[9]= | 
| In[10]:= | {First[br], Crossings[br], BraidIndex[K]} | 
| KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/. | 
| KnotTheory::loading: Loading precomputed data in IndianaData`. | 
| Out[10]= | { 2, 3, 2 } | 
| In[11]:= | Show[BraidPlot[br]] | 
| 
 | 
| Out[11]= | -Graphics- | 
| In[12]:= | Show[DrawMorseLink[K]] | 
| KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
| KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
|   | 
| Out[12]= | -Graphics- | 
| In[13]:= | ap = ArcPresentation[K] | 
| Out[13]= | ArcPresentation[{5, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 1}] | 
| In[14]:= | Draw[ap] | 
|   | 
| Out[14]= | -Graphics- | 
Three dimensional invariants
| 
 | [edit Notes for 3 1's three dimensional invariants] The rope length of the trefoil is known to be no more than 16.372, by numerical experiments, while the sharpest known lower bound (actually applicable to all non-trivial knots) is 15.66.The trefoil is a fibered knot! A java applet demonstrating it, written by Robert Barrington Leigh at the University of Toronto, is here. | 
Four dimensional invariants
| 
 | 
Polynomial invariants
The braid index of 3_1 is only 2, so it's easy to calculate lots of quantum invariants. A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 8 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 0,2 | |
| 1,0 | |
| 1,1 | |
| 2,0 | |
| 3,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,0,1 | |
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,0,0,1 | |
| 0,1,0,0 | |
| 1,0,0,0 | 
A5 Invariants.
| Weight | Invariant | 
|---|---|
| 0,0,0,0,1 | |
| 1,0,0,0,0 | 
A6 Invariants.
| Weight | Invariant | 
|---|---|
| 0,0,0,0,0,1 | |
| 1,0,0,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
B3 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0 | 
B4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
B5 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0,0 | 
C3 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0 | 
C4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["3 1"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 3, -2 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["3 1"]; | 
| In[4]:= | {A = Alexander[K][t], J = Jones[K][q]} | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[4]= | { , } | 
| In[5]:= | DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K] | 
| KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`. | 
| KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005. | 
| Out[5]= | {} | 
| In[6]:= | DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots11`. | 
| Out[6]= | {} | 
Vassiliev invariants
| V2 and V3: | (1, -1) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 3 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. | 
 | 


































