7 2: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 7 |
<!-- provide an anchor so we can return to the top of the page -->
k = 2 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,7,-2,1,-3,6,-4,5,-7,2,-5,4,-6,3/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=7|k=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,7,-2,1,-3,6,-4,5,-7,2,-5,4,-6,3/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 9 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 9, width is 4.
braid_index = 4 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = [[K11n88]], |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{[[K11n88]], ...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=8.33333%>-7</td ><td width=8.33333%>-6</td ><td width=8.33333%>-5</td ><td width=8.33333%>-4</td ><td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=16.6667%>&chi;</td></tr>
<td width=8.33333%>-7</td ><td width=8.33333%>-6</td ><td width=8.33333%>-5</td ><td width=8.33333%>-4</td ><td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=16.6667%>&chi;</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
Line 69: Line 37:
<tr align=center><td>-15</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-2} - q^{-3} +2 q^{-5} -2 q^{-6} + q^{-7} +3 q^{-8} -4 q^{-9} + q^{-10} +3 q^{-11} -4 q^{-12} +3 q^{-14} -3 q^{-15} +3 q^{-17} -2 q^{-18} - q^{-19} +2 q^{-20} - q^{-21} - q^{-22} + q^{-23} </math> |

coloured_jones_3 = <math> q^{-3} - q^{-4} +2 q^{-7} - q^{-8} + q^{-11} - q^{-12} + q^{-13} -2 q^{-16} +2 q^{-17} + q^{-18} - q^{-19} -2 q^{-20} + q^{-21} + q^{-22} -2 q^{-24} + q^{-26} + q^{-27} -2 q^{-28} - q^{-29} +2 q^{-30} +2 q^{-31} -2 q^{-32} -2 q^{-33} +2 q^{-34} +2 q^{-35} - q^{-36} -3 q^{-37} + q^{-38} +2 q^{-39} -2 q^{-41} + q^{-43} + q^{-44} - q^{-45} </math> |
{{Display Coloured Jones|J2=<math> q^{-2} - q^{-3} +2 q^{-5} -2 q^{-6} + q^{-7} +3 q^{-8} -4 q^{-9} + q^{-10} +3 q^{-11} -4 q^{-12} +3 q^{-14} -3 q^{-15} +3 q^{-17} -2 q^{-18} - q^{-19} +2 q^{-20} - q^{-21} - q^{-22} + q^{-23} </math>|J3=<math> q^{-3} - q^{-4} +2 q^{-7} - q^{-8} + q^{-11} - q^{-12} + q^{-13} -2 q^{-16} +2 q^{-17} + q^{-18} - q^{-19} -2 q^{-20} + q^{-21} + q^{-22} -2 q^{-24} + q^{-26} + q^{-27} -2 q^{-28} - q^{-29} +2 q^{-30} +2 q^{-31} -2 q^{-32} -2 q^{-33} +2 q^{-34} +2 q^{-35} - q^{-36} -3 q^{-37} + q^{-38} +2 q^{-39} -2 q^{-41} + q^{-43} + q^{-44} - q^{-45} </math>|J4=<math> q^{-4} - q^{-5} +3 q^{-9} -2 q^{-10} - q^{-12} - q^{-13} +5 q^{-14} -2 q^{-15} + q^{-16} -3 q^{-17} -3 q^{-18} +7 q^{-19} +2 q^{-21} -5 q^{-22} -6 q^{-23} +8 q^{-24} +4 q^{-26} -5 q^{-27} -8 q^{-28} +7 q^{-29} +5 q^{-31} -5 q^{-32} -7 q^{-33} +8 q^{-34} - q^{-35} +4 q^{-36} -4 q^{-37} -6 q^{-38} +8 q^{-39} -2 q^{-40} +3 q^{-41} -3 q^{-42} -5 q^{-43} +7 q^{-44} -3 q^{-45} +2 q^{-46} - q^{-47} -3 q^{-48} +6 q^{-49} -4 q^{-50} + q^{-51} - q^{-53} +5 q^{-54} -5 q^{-55} +5 q^{-59} -4 q^{-60} - q^{-61} - q^{-62} +5 q^{-64} -2 q^{-65} - q^{-66} - q^{-67} - q^{-68} +3 q^{-69} - q^{-72} - q^{-73} + q^{-74} </math>|J5=<math> q^{-5} - q^{-6} + q^{-10} +2 q^{-11} -2 q^{-12} - q^{-13} - q^{-15} +2 q^{-16} +4 q^{-17} -2 q^{-18} -2 q^{-19} -2 q^{-20} - q^{-21} +3 q^{-22} +7 q^{-23} - q^{-24} -5 q^{-25} -6 q^{-26} -2 q^{-27} +6 q^{-28} +11 q^{-29} -7 q^{-31} -11 q^{-32} -4 q^{-33} +8 q^{-34} +15 q^{-35} +2 q^{-36} -8 q^{-37} -12 q^{-38} -7 q^{-39} +7 q^{-40} +15 q^{-41} +5 q^{-42} -8 q^{-43} -12 q^{-44} -7 q^{-45} +7 q^{-46} +14 q^{-47} +5 q^{-48} -8 q^{-49} -11 q^{-50} -6 q^{-51} +8 q^{-52} +12 q^{-53} +4 q^{-54} -7 q^{-55} -10 q^{-56} -5 q^{-57} +7 q^{-58} +10 q^{-59} +4 q^{-60} -5 q^{-61} -9 q^{-62} -5 q^{-63} +5 q^{-64} +8 q^{-65} +3 q^{-66} -3 q^{-67} -7 q^{-68} -4 q^{-69} +3 q^{-70} +6 q^{-71} +3 q^{-72} -2 q^{-73} -4 q^{-74} -2 q^{-75} + q^{-76} +3 q^{-77} +2 q^{-78} -2 q^{-79} -2 q^{-80} + q^{-82} + q^{-83} -2 q^{-85} - q^{-86} + q^{-87} +2 q^{-88} + q^{-89} -3 q^{-91} -2 q^{-92} + q^{-93} +2 q^{-94} +2 q^{-95} + q^{-96} -2 q^{-97} -3 q^{-98} + q^{-100} + q^{-101} +2 q^{-102} -2 q^{-104} - q^{-105} + q^{-108} + q^{-109} - q^{-110} </math>|J6=<math> q^{-6} - q^{-7} + q^{-11} +2 q^{-13} -3 q^{-14} - q^{-17} +2 q^{-18} + q^{-19} +4 q^{-20} -5 q^{-21} - q^{-23} -2 q^{-24} +3 q^{-25} +3 q^{-26} +5 q^{-27} -8 q^{-28} - q^{-29} -2 q^{-30} -2 q^{-31} +6 q^{-32} +6 q^{-33} +5 q^{-34} -13 q^{-35} -4 q^{-36} -3 q^{-37} +12 q^{-39} +10 q^{-40} +4 q^{-41} -19 q^{-42} -9 q^{-43} -5 q^{-44} + q^{-45} +17 q^{-46} +15 q^{-47} +6 q^{-48} -23 q^{-49} -12 q^{-50} -8 q^{-51} - q^{-52} +19 q^{-53} +18 q^{-54} +8 q^{-55} -22 q^{-56} -12 q^{-57} -9 q^{-58} -3 q^{-59} +19 q^{-60} +19 q^{-61} +8 q^{-62} -22 q^{-63} -11 q^{-64} -8 q^{-65} -3 q^{-66} +18 q^{-67} +17 q^{-68} +8 q^{-69} -22 q^{-70} -10 q^{-71} -7 q^{-72} -2 q^{-73} +16 q^{-74} +15 q^{-75} +9 q^{-76} -20 q^{-77} -9 q^{-78} -7 q^{-79} -3 q^{-80} +13 q^{-81} +13 q^{-82} +12 q^{-83} -17 q^{-84} -8 q^{-85} -7 q^{-86} -5 q^{-87} +10 q^{-88} +11 q^{-89} +14 q^{-90} -13 q^{-91} -7 q^{-92} -8 q^{-93} -7 q^{-94} +7 q^{-95} +9 q^{-96} +15 q^{-97} -9 q^{-98} -4 q^{-99} -7 q^{-100} -8 q^{-101} +4 q^{-102} +6 q^{-103} +14 q^{-104} -6 q^{-105} - q^{-106} -5 q^{-107} -7 q^{-108} + q^{-109} +2 q^{-110} +11 q^{-111} -5 q^{-112} + q^{-113} -2 q^{-114} -4 q^{-115} +8 q^{-118} -6 q^{-119} + q^{-120} - q^{-122} +7 q^{-125} -6 q^{-126} - q^{-127} - q^{-128} + q^{-131} +7 q^{-132} -4 q^{-133} - q^{-134} -2 q^{-135} - q^{-136} - q^{-137} +6 q^{-139} - q^{-140} - q^{-142} - q^{-143} -2 q^{-144} - q^{-145} +3 q^{-146} + q^{-148} - q^{-151} - q^{-152} + q^{-153} </math>|J7=<math> q^{-7} - q^{-8} + q^{-12} + q^{-15} -2 q^{-16} - q^{-19} +2 q^{-20} + q^{-21} + q^{-22} +2 q^{-23} -4 q^{-24} - q^{-26} -2 q^{-27} +2 q^{-28} +2 q^{-29} +2 q^{-30} +3 q^{-31} -5 q^{-32} - q^{-33} - q^{-34} -2 q^{-35} +3 q^{-36} + q^{-37} + q^{-38} +4 q^{-39} -6 q^{-40} - q^{-41} + q^{-42} + q^{-43} +4 q^{-44} -2 q^{-45} -3 q^{-46} - q^{-47} -7 q^{-48} +2 q^{-49} +7 q^{-50} +6 q^{-51} +7 q^{-52} -4 q^{-53} -10 q^{-54} -9 q^{-55} -11 q^{-56} +5 q^{-57} +12 q^{-58} +13 q^{-59} +13 q^{-60} -4 q^{-61} -13 q^{-62} -15 q^{-63} -17 q^{-64} +2 q^{-65} +14 q^{-66} +17 q^{-67} +17 q^{-68} -2 q^{-69} -11 q^{-70} -16 q^{-71} -20 q^{-72} - q^{-73} +12 q^{-74} +18 q^{-75} +19 q^{-76} - q^{-77} -10 q^{-78} -15 q^{-79} -19 q^{-80} -2 q^{-81} +12 q^{-82} +17 q^{-83} +18 q^{-84} -2 q^{-85} -10 q^{-86} -14 q^{-87} -18 q^{-88} +12 q^{-90} +14 q^{-91} +17 q^{-92} -2 q^{-93} -10 q^{-94} -13 q^{-95} -17 q^{-96} + q^{-97} +10 q^{-98} +10 q^{-99} +17 q^{-100} -8 q^{-102} -10 q^{-103} -16 q^{-104} +6 q^{-106} +6 q^{-107} +17 q^{-108} +3 q^{-109} -4 q^{-110} -7 q^{-111} -16 q^{-112} -3 q^{-113} +2 q^{-114} +3 q^{-115} +16 q^{-116} +7 q^{-117} + q^{-118} -3 q^{-119} -17 q^{-120} -6 q^{-121} -3 q^{-122} - q^{-123} +15 q^{-124} +9 q^{-125} +6 q^{-126} +2 q^{-127} -15 q^{-128} -9 q^{-129} -8 q^{-130} -4 q^{-131} +13 q^{-132} +9 q^{-133} +9 q^{-134} +8 q^{-135} -11 q^{-136} -9 q^{-137} -10 q^{-138} -8 q^{-139} +9 q^{-140} +6 q^{-141} +9 q^{-142} +11 q^{-143} -6 q^{-144} -6 q^{-145} -8 q^{-146} -10 q^{-147} +4 q^{-148} +2 q^{-149} +6 q^{-150} +11 q^{-151} -3 q^{-152} -2 q^{-153} -3 q^{-154} -8 q^{-155} +2 q^{-156} - q^{-157} +2 q^{-158} +8 q^{-159} -3 q^{-160} -5 q^{-163} +3 q^{-164} - q^{-165} +5 q^{-167} -3 q^{-168} - q^{-169} - q^{-170} -4 q^{-171} +4 q^{-172} + q^{-173} +5 q^{-175} -2 q^{-176} - q^{-177} -2 q^{-178} -5 q^{-179} +2 q^{-180} + q^{-181} +4 q^{-183} + q^{-184} + q^{-185} - q^{-186} -5 q^{-187} - q^{-190} +2 q^{-191} + q^{-192} +2 q^{-193} + q^{-194} -2 q^{-195} - q^{-196} - q^{-198} + q^{-201} + q^{-202} - q^{-203} </math>}}
coloured_jones_4 = <math> q^{-4} - q^{-5} +3 q^{-9} -2 q^{-10} - q^{-12} - q^{-13} +5 q^{-14} -2 q^{-15} + q^{-16} -3 q^{-17} -3 q^{-18} +7 q^{-19} +2 q^{-21} -5 q^{-22} -6 q^{-23} +8 q^{-24} +4 q^{-26} -5 q^{-27} -8 q^{-28} +7 q^{-29} +5 q^{-31} -5 q^{-32} -7 q^{-33} +8 q^{-34} - q^{-35} +4 q^{-36} -4 q^{-37} -6 q^{-38} +8 q^{-39} -2 q^{-40} +3 q^{-41} -3 q^{-42} -5 q^{-43} +7 q^{-44} -3 q^{-45} +2 q^{-46} - q^{-47} -3 q^{-48} +6 q^{-49} -4 q^{-50} + q^{-51} - q^{-53} +5 q^{-54} -5 q^{-55} +5 q^{-59} -4 q^{-60} - q^{-61} - q^{-62} +5 q^{-64} -2 q^{-65} - q^{-66} - q^{-67} - q^{-68} +3 q^{-69} - q^{-72} - q^{-73} + q^{-74} </math> |

coloured_jones_5 = <math> q^{-5} - q^{-6} + q^{-10} +2 q^{-11} -2 q^{-12} - q^{-13} - q^{-15} +2 q^{-16} +4 q^{-17} -2 q^{-18} -2 q^{-19} -2 q^{-20} - q^{-21} +3 q^{-22} +7 q^{-23} - q^{-24} -5 q^{-25} -6 q^{-26} -2 q^{-27} +6 q^{-28} +11 q^{-29} -7 q^{-31} -11 q^{-32} -4 q^{-33} +8 q^{-34} +15 q^{-35} +2 q^{-36} -8 q^{-37} -12 q^{-38} -7 q^{-39} +7 q^{-40} +15 q^{-41} +5 q^{-42} -8 q^{-43} -12 q^{-44} -7 q^{-45} +7 q^{-46} +14 q^{-47} +5 q^{-48} -8 q^{-49} -11 q^{-50} -6 q^{-51} +8 q^{-52} +12 q^{-53} +4 q^{-54} -7 q^{-55} -10 q^{-56} -5 q^{-57} +7 q^{-58} +10 q^{-59} +4 q^{-60} -5 q^{-61} -9 q^{-62} -5 q^{-63} +5 q^{-64} +8 q^{-65} +3 q^{-66} -3 q^{-67} -7 q^{-68} -4 q^{-69} +3 q^{-70} +6 q^{-71} +3 q^{-72} -2 q^{-73} -4 q^{-74} -2 q^{-75} + q^{-76} +3 q^{-77} +2 q^{-78} -2 q^{-79} -2 q^{-80} + q^{-82} + q^{-83} -2 q^{-85} - q^{-86} + q^{-87} +2 q^{-88} + q^{-89} -3 q^{-91} -2 q^{-92} + q^{-93} +2 q^{-94} +2 q^{-95} + q^{-96} -2 q^{-97} -3 q^{-98} + q^{-100} + q^{-101} +2 q^{-102} -2 q^{-104} - q^{-105} + q^{-108} + q^{-109} - q^{-110} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math> q^{-6} - q^{-7} + q^{-11} +2 q^{-13} -3 q^{-14} - q^{-17} +2 q^{-18} + q^{-19} +4 q^{-20} -5 q^{-21} - q^{-23} -2 q^{-24} +3 q^{-25} +3 q^{-26} +5 q^{-27} -8 q^{-28} - q^{-29} -2 q^{-30} -2 q^{-31} +6 q^{-32} +6 q^{-33} +5 q^{-34} -13 q^{-35} -4 q^{-36} -3 q^{-37} +12 q^{-39} +10 q^{-40} +4 q^{-41} -19 q^{-42} -9 q^{-43} -5 q^{-44} + q^{-45} +17 q^{-46} +15 q^{-47} +6 q^{-48} -23 q^{-49} -12 q^{-50} -8 q^{-51} - q^{-52} +19 q^{-53} +18 q^{-54} +8 q^{-55} -22 q^{-56} -12 q^{-57} -9 q^{-58} -3 q^{-59} +19 q^{-60} +19 q^{-61} +8 q^{-62} -22 q^{-63} -11 q^{-64} -8 q^{-65} -3 q^{-66} +18 q^{-67} +17 q^{-68} +8 q^{-69} -22 q^{-70} -10 q^{-71} -7 q^{-72} -2 q^{-73} +16 q^{-74} +15 q^{-75} +9 q^{-76} -20 q^{-77} -9 q^{-78} -7 q^{-79} -3 q^{-80} +13 q^{-81} +13 q^{-82} +12 q^{-83} -17 q^{-84} -8 q^{-85} -7 q^{-86} -5 q^{-87} +10 q^{-88} +11 q^{-89} +14 q^{-90} -13 q^{-91} -7 q^{-92} -8 q^{-93} -7 q^{-94} +7 q^{-95} +9 q^{-96} +15 q^{-97} -9 q^{-98} -4 q^{-99} -7 q^{-100} -8 q^{-101} +4 q^{-102} +6 q^{-103} +14 q^{-104} -6 q^{-105} - q^{-106} -5 q^{-107} -7 q^{-108} + q^{-109} +2 q^{-110} +11 q^{-111} -5 q^{-112} + q^{-113} -2 q^{-114} -4 q^{-115} +8 q^{-118} -6 q^{-119} + q^{-120} - q^{-122} +7 q^{-125} -6 q^{-126} - q^{-127} - q^{-128} + q^{-131} +7 q^{-132} -4 q^{-133} - q^{-134} -2 q^{-135} - q^{-136} - q^{-137} +6 q^{-139} - q^{-140} - q^{-142} - q^{-143} -2 q^{-144} - q^{-145} +3 q^{-146} + q^{-148} - q^{-151} - q^{-152} + q^{-153} </math> |

coloured_jones_7 = <math> q^{-7} - q^{-8} + q^{-12} + q^{-15} -2 q^{-16} - q^{-19} +2 q^{-20} + q^{-21} + q^{-22} +2 q^{-23} -4 q^{-24} - q^{-26} -2 q^{-27} +2 q^{-28} +2 q^{-29} +2 q^{-30} +3 q^{-31} -5 q^{-32} - q^{-33} - q^{-34} -2 q^{-35} +3 q^{-36} + q^{-37} + q^{-38} +4 q^{-39} -6 q^{-40} - q^{-41} + q^{-42} + q^{-43} +4 q^{-44} -2 q^{-45} -3 q^{-46} - q^{-47} -7 q^{-48} +2 q^{-49} +7 q^{-50} +6 q^{-51} +7 q^{-52} -4 q^{-53} -10 q^{-54} -9 q^{-55} -11 q^{-56} +5 q^{-57} +12 q^{-58} +13 q^{-59} +13 q^{-60} -4 q^{-61} -13 q^{-62} -15 q^{-63} -17 q^{-64} +2 q^{-65} +14 q^{-66} +17 q^{-67} +17 q^{-68} -2 q^{-69} -11 q^{-70} -16 q^{-71} -20 q^{-72} - q^{-73} +12 q^{-74} +18 q^{-75} +19 q^{-76} - q^{-77} -10 q^{-78} -15 q^{-79} -19 q^{-80} -2 q^{-81} +12 q^{-82} +17 q^{-83} +18 q^{-84} -2 q^{-85} -10 q^{-86} -14 q^{-87} -18 q^{-88} +12 q^{-90} +14 q^{-91} +17 q^{-92} -2 q^{-93} -10 q^{-94} -13 q^{-95} -17 q^{-96} + q^{-97} +10 q^{-98} +10 q^{-99} +17 q^{-100} -8 q^{-102} -10 q^{-103} -16 q^{-104} +6 q^{-106} +6 q^{-107} +17 q^{-108} +3 q^{-109} -4 q^{-110} -7 q^{-111} -16 q^{-112} -3 q^{-113} +2 q^{-114} +3 q^{-115} +16 q^{-116} +7 q^{-117} + q^{-118} -3 q^{-119} -17 q^{-120} -6 q^{-121} -3 q^{-122} - q^{-123} +15 q^{-124} +9 q^{-125} +6 q^{-126} +2 q^{-127} -15 q^{-128} -9 q^{-129} -8 q^{-130} -4 q^{-131} +13 q^{-132} +9 q^{-133} +9 q^{-134} +8 q^{-135} -11 q^{-136} -9 q^{-137} -10 q^{-138} -8 q^{-139} +9 q^{-140} +6 q^{-141} +9 q^{-142} +11 q^{-143} -6 q^{-144} -6 q^{-145} -8 q^{-146} -10 q^{-147} +4 q^{-148} +2 q^{-149} +6 q^{-150} +11 q^{-151} -3 q^{-152} -2 q^{-153} -3 q^{-154} -8 q^{-155} +2 q^{-156} - q^{-157} +2 q^{-158} +8 q^{-159} -3 q^{-160} -5 q^{-163} +3 q^{-164} - q^{-165} +5 q^{-167} -3 q^{-168} - q^{-169} - q^{-170} -4 q^{-171} +4 q^{-172} + q^{-173} +5 q^{-175} -2 q^{-176} - q^{-177} -2 q^{-178} -5 q^{-179} +2 q^{-180} + q^{-181} +4 q^{-183} + q^{-184} + q^{-185} - q^{-186} -5 q^{-187} - q^{-190} +2 q^{-191} + q^{-192} +2 q^{-193} + q^{-194} -2 q^{-195} - q^{-196} - q^{-198} + q^{-201} + q^{-202} - q^{-203} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[7, 2]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 1], X[7, 12, 8, 13],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[7, 2]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 1], X[7, 12, 8, 13],
X[11, 8, 12, 9], X[13, 6, 14, 7], X[9, 2, 10, 3]]</nowiki></pre></td></tr>
X[11, 8, 12, 9], X[13, 6, 14, 7], X[9, 2, 10, 3]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[7, 2]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[7, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 12, 2, 8, 6]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[7, 2]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -2, 1, -2, -3, 2, -3}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[7, 2]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[7, 2]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 12, 2, 8, 6]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[7, 2]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:7_2_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[7, 2]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[7, 2]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 1, 2, {3, 4}, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, -2, 1, -2, -3, 2, -3}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 2]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[7, 2]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[7, 2]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:7_2_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[7, 2]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 1, 2, {3, 4}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[7, 2]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3
-5 + - + 3 t
-5 + - + 3 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[7, 2]][z]</nowiki></code></td></tr>
1 + 3 z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 2]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
1 + 3 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[7, 2]], KnotSignature[Knot[7, 2]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{11, -2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[7, 2]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -7 -6 2 2 2 -2 1
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 2]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[7, 2]], KnotSignature[Knot[7, 2]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{11, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[7, 2]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 -7 -6 2 2 2 -2 1
-q + q - q + -- - -- + -- - q + -
-q + q - q + -- - -- + -- - q + -
5 4 3 q
5 4 3 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 2], Knot[11, NonAlternating, 88]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[7, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -26 -24 -18 -16 -8 -6 -2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 2], Knot[11, NonAlternating, 88]}</nowiki></code></td></tr>
-q - q + q + q + q + q + q</nowiki></pre></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[7, 2]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 8 2 2 4 2 6 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[7, 2]][q]</nowiki></code></td></tr>
a + a - a + a z + a z + a z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 2]][a, z]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 8 7 9 2 2 6 2 8 2 3 3
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -26 -24 -18 -16 -8 -6 -2
-q - q + q + q + q + q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[7, 2]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 8 2 2 4 2 6 2
a + a - a + a z + a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[7, 2]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 8 7 9 2 2 6 2 8 2 3 3
-a - a - a + 3 a z + 3 a z + a z + 3 a z + 4 a z + a z -
-a - a - a + 3 a z + 3 a z + a z + 3 a z + 4 a z + a z -
Line 147: Line 189:
7 5 9 5 6 6 8 6
7 5 9 5 6 6 8 6
2 a z + a z + a z + a z</nowiki></pre></td></tr>
2 a z + a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 2]], Vassiliev[3][Knot[7, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, -6}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[7, 2]], Vassiliev[3][Knot[7, 2]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[7, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 1 1 1 1 1 1 1 1
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, -6}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[7, 2]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 1 1 1 1 1 1 1 1
q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
q 17 7 13 6 13 5 11 4 9 4 9 3 7 3
q 17 7 13 6 13 5 11 4 9 4 9 3 7 3
Line 161: Line 211:
----- + ----- + ----
----- + ----- + ----
7 2 5 2 3
7 2 5 2 3
q t q t q t</nowiki></pre></td></tr>
q t q t q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[7, 2], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -23 -22 -21 2 -19 2 3 3 3 4 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[7, 2], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 -22 -21 2 -19 2 3 3 3 4 3
q - q - q + --- - q - --- + --- - --- + --- - --- + --- +
q - q - q + --- - q - --- + --- - --- + --- - --- + --- +
20 18 17 15 14 12 11
20 18 17 15 14 12 11
Line 172: Line 226:
q - -- + -- + q - -- + -- - q + q
q - -- + -- + q - -- + -- - q + q
9 8 6 5
9 8 6 5
q q q q</nowiki></pre></td></tr>
q q q q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:01, 1 September 2005

7 1.gif

7_1

7 3.gif

7_3

7 2.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 7 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 2 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,14,6,1 X7,12,8,13 X11,8,12,9 X13,6,14,7 X9,2,10,3
Gauss code -1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3
Dowker-Thistlethwaite code 4 10 14 12 2 8 6
Conway Notation [52]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

7 2 ML.gif 7 2 AP.gif
[{9, 6}, {5, 7}, {6, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 8}, {7, 9}, {8, 1}]

[edit Notes on presentations of 7 2]

Knot 7_2.
A graph, knot 7_2.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{$\$$Failed}}
Hyperbolic Volume 3.33174
A-Polynomial See Data:7 2/A-polynomial

[edit Notes for 7 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 7 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 11, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {K11n88,}

Vassiliev invariants

V2 and V3: (3, -6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 7 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-1       11
-3      110
-5     1  1
-7    11  0
-9   11   0
-11   1    1
-13 11     0
-15        0
-171       -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials