7 7: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 7 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 7 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,7,-6,3,-4,2,-5,6,-7,5/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=7|k=7|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,7,-6,3,-4,2,-5,6,-7,5/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 7 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 7, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[K11n28]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n28]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=8.33333%>3</td ><td width=8.33333%>4</td ><td width=16.6667%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 70: | Line 37: | ||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{12}-2 q^{11}-q^{10}+6 q^9-5 q^8-5 q^7+14 q^6-7 q^5-11 q^4+20 q^3-7 q^2-15 q+21-5 q^{-1} -14 q^{-2} +16 q^{-3} -2 q^{-4} -9 q^{-5} +8 q^{-6} -3 q^{-8} + q^{-9} </math> | |
|||
coloured_jones_3 = <math>q^{24}-2 q^{23}-q^{22}+2 q^{21}+5 q^{20}-4 q^{19}-9 q^{18}+4 q^{17}+16 q^{16}-3 q^{15}-23 q^{14}-q^{13}+31 q^{12}+5 q^{11}-38 q^{10}-11 q^9+43 q^8+19 q^7-48 q^6-23 q^5+50 q^4+28 q^3-50 q^2-32 q+49+32 q^{-1} -43 q^{-2} -34 q^{-3} +40 q^{-4} +28 q^{-5} -28 q^{-6} -28 q^{-7} +23 q^{-8} +20 q^{-9} -12 q^{-10} -17 q^{-11} +9 q^{-12} +9 q^{-13} -3 q^{-14} -5 q^{-15} +3 q^{-17} - q^{-18} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{12}-2 q^{11}-q^{10}+6 q^9-5 q^8-5 q^7+14 q^6-7 q^5-11 q^4+20 q^3-7 q^2-15 q+21-5 q^{-1} -14 q^{-2} +16 q^{-3} -2 q^{-4} -9 q^{-5} +8 q^{-6} -3 q^{-8} + q^{-9} </math>|J3=<math>q^{24}-2 q^{23}-q^{22}+2 q^{21}+5 q^{20}-4 q^{19}-9 q^{18}+4 q^{17}+16 q^{16}-3 q^{15}-23 q^{14}-q^{13}+31 q^{12}+5 q^{11}-38 q^{10}-11 q^9+43 q^8+19 q^7-48 q^6-23 q^5+50 q^4+28 q^3-50 q^2-32 q+49+32 q^{-1} -43 q^{-2} -34 q^{-3} +40 q^{-4} +28 q^{-5} -28 q^{-6} -28 q^{-7} +23 q^{-8} +20 q^{-9} -12 q^{-10} -17 q^{-11} +9 q^{-12} +9 q^{-13} -3 q^{-14} -5 q^{-15} +3 q^{-17} - q^{-18} </math>|J4=<math>q^{40}-2 q^{39}-q^{38}+2 q^{37}+q^{36}+6 q^{35}-8 q^{34}-7 q^{33}+2 q^{32}+4 q^{31}+25 q^{30}-14 q^{29}-23 q^{28}-10 q^{27}+3 q^{26}+62 q^{25}-7 q^{24}-38 q^{23}-39 q^{22}-16 q^{21}+106 q^{20}+17 q^{19}-39 q^{18}-76 q^{17}-54 q^{16}+141 q^{15}+50 q^{14}-24 q^{13}-109 q^{12}-98 q^{11}+162 q^{10}+79 q^9-4 q^8-129 q^7-131 q^6+167 q^5+98 q^4+16 q^3-136 q^2-149 q+156+103 q^{-1} +31 q^{-2} -125 q^{-3} -147 q^{-4} +125 q^{-5} +90 q^{-6} +44 q^{-7} -93 q^{-8} -127 q^{-9} +82 q^{-10} +61 q^{-11} +47 q^{-12} -50 q^{-13} -90 q^{-14} +40 q^{-15} +28 q^{-16} +36 q^{-17} -17 q^{-18} -47 q^{-19} +15 q^{-20} +6 q^{-21} +17 q^{-22} -2 q^{-23} -16 q^{-24} +3 q^{-25} +5 q^{-27} -3 q^{-29} + q^{-30} </math>|J5=<math>q^{60}-2 q^{59}-q^{58}+2 q^{57}+q^{56}+2 q^{55}+2 q^{54}-6 q^{53}-9 q^{52}+2 q^{51}+7 q^{50}+12 q^{49}+11 q^{48}-11 q^{47}-29 q^{46}-19 q^{45}+9 q^{44}+39 q^{43}+45 q^{42}+3 q^{41}-56 q^{40}-72 q^{39}-26 q^{38}+60 q^{37}+109 q^{36}+61 q^{35}-55 q^{34}-141 q^{33}-110 q^{32}+33 q^{31}+173 q^{30}+162 q^{29}-189 q^{27}-221 q^{26}-45 q^{25}+197 q^{24}+278 q^{23}+96 q^{22}-198 q^{21}-324 q^{20}-149 q^{19}+187 q^{18}+368 q^{17}+202 q^{16}-180 q^{15}-400 q^{14}-242 q^{13}+159 q^{12}+427 q^{11}+283 q^{10}-147 q^9-446 q^8-311 q^7+132 q^6+452 q^5+335 q^4-111 q^3-455 q^2-353 q+98+441 q^{-1} +354 q^{-2} -62 q^{-3} -420 q^{-4} -363 q^{-5} +49 q^{-6} +378 q^{-7} +341 q^{-8} - q^{-9} -335 q^{-10} -330 q^{-11} -11 q^{-12} +269 q^{-13} +283 q^{-14} +55 q^{-15} -211 q^{-16} -253 q^{-17} -50 q^{-18} +141 q^{-19} +190 q^{-20} +76 q^{-21} -95 q^{-22} -149 q^{-23} -55 q^{-24} +50 q^{-25} +91 q^{-26} +56 q^{-27} -24 q^{-28} -63 q^{-29} -33 q^{-30} +9 q^{-31} +32 q^{-32} +21 q^{-33} -15 q^{-35} -17 q^{-36} +2 q^{-37} +9 q^{-38} +4 q^{-39} -5 q^{-42} +3 q^{-44} - q^{-45} </math>|J6=<math>q^{84}-2 q^{83}-q^{82}+2 q^{81}+q^{80}+2 q^{79}-2 q^{78}+4 q^{77}-8 q^{76}-9 q^{75}+5 q^{74}+6 q^{73}+12 q^{72}+q^{71}+15 q^{70}-24 q^{69}-35 q^{68}-8 q^{67}+8 q^{66}+37 q^{65}+27 q^{64}+67 q^{63}-35 q^{62}-88 q^{61}-70 q^{60}-36 q^{59}+47 q^{58}+79 q^{57}+200 q^{56}+22 q^{55}-116 q^{54}-179 q^{53}-170 q^{52}-41 q^{51}+90 q^{50}+398 q^{49}+192 q^{48}-23 q^{47}-249 q^{46}-364 q^{45}-271 q^{44}-38 q^{43}+560 q^{42}+435 q^{41}+224 q^{40}-184 q^{39}-517 q^{38}-591 q^{37}-318 q^{36}+595 q^{35}+650 q^{34}+561 q^{33}+16 q^{32}-556 q^{31}-899 q^{30}-672 q^{29}+511 q^{28}+775 q^{27}+886 q^{26}+275 q^{25}-498 q^{24}-1130 q^{23}-1000 q^{22}+373 q^{21}+823 q^{20}+1137 q^{19}+507 q^{18}-404 q^{17}-1281 q^{16}-1245 q^{15}+243 q^{14}+828 q^{13}+1305 q^{12}+674 q^{11}-315 q^{10}-1362 q^9-1398 q^8+133 q^7+804 q^6+1395 q^5+787 q^4-225 q^3-1371 q^2-1467 q+18+729 q^{-1} +1400 q^{-2} +862 q^{-3} -102 q^{-4} -1279 q^{-5} -1449 q^{-6} -118 q^{-7} +572 q^{-8} +1288 q^{-9} +890 q^{-10} +66 q^{-11} -1058 q^{-12} -1311 q^{-13} -249 q^{-14} +332 q^{-15} +1031 q^{-16} +825 q^{-17} +241 q^{-18} -724 q^{-19} -1034 q^{-20} -312 q^{-21} +76 q^{-22} +669 q^{-23} +640 q^{-24} +335 q^{-25} -373 q^{-26} -667 q^{-27} -264 q^{-28} -90 q^{-29} +321 q^{-30} +383 q^{-31} +299 q^{-32} -127 q^{-33} -331 q^{-34} -145 q^{-35} -122 q^{-36} +100 q^{-37} +161 q^{-38} +183 q^{-39} -22 q^{-40} -124 q^{-41} -44 q^{-42} -74 q^{-43} +14 q^{-44} +44 q^{-45} +79 q^{-46} - q^{-47} -35 q^{-48} -6 q^{-49} -27 q^{-50} +6 q^{-52} +26 q^{-53} -2 q^{-54} -9 q^{-55} +3 q^{-56} -7 q^{-57} +5 q^{-60} -3 q^{-62} + q^{-63} </math>|J7=<math>q^{112}-2 q^{111}-q^{110}+2 q^{109}+q^{108}+2 q^{107}-2 q^{106}+2 q^{104}-8 q^{103}-6 q^{102}+4 q^{101}+6 q^{100}+14 q^{99}+2 q^{98}-2 q^{97}+5 q^{96}-27 q^{95}-28 q^{94}-9 q^{93}+8 q^{92}+49 q^{91}+37 q^{90}+25 q^{89}+25 q^{88}-58 q^{87}-93 q^{86}-81 q^{85}-53 q^{84}+76 q^{83}+123 q^{82}+140 q^{81}+149 q^{80}-30 q^{79}-165 q^{78}-250 q^{77}-275 q^{76}-44 q^{75}+154 q^{74}+325 q^{73}+461 q^{72}+217 q^{71}-77 q^{70}-391 q^{69}-661 q^{68}-446 q^{67}-101 q^{66}+368 q^{65}+854 q^{64}+741 q^{63}+372 q^{62}-239 q^{61}-984 q^{60}-1057 q^{59}-750 q^{58}-4 q^{57}+1036 q^{56}+1344 q^{55}+1174 q^{54}+369 q^{53}-956 q^{52}-1583 q^{51}-1633 q^{50}-821 q^{49}+776 q^{48}+1739 q^{47}+2061 q^{46}+1329 q^{45}-498 q^{44}-1789 q^{43}-2451 q^{42}-1857 q^{41}+147 q^{40}+1772 q^{39}+2782 q^{38}+2352 q^{37}+228 q^{36}-1684 q^{35}-3024 q^{34}-2818 q^{33}-617 q^{32}+1557 q^{31}+3231 q^{30}+3224 q^{29}+954 q^{28}-1422 q^{27}-3361 q^{26}-3554 q^{25}-1278 q^{24}+1274 q^{23}+3479 q^{22}+3840 q^{21}+1535 q^{20}-1168 q^{19}-3540 q^{18}-4050 q^{17}-1755 q^{16}+1044 q^{15}+3592 q^{14}+4235 q^{13}+1934 q^{12}-955 q^{11}-3618 q^{10}-4354 q^9-2082 q^8+849 q^7+3599 q^6+4443 q^5+2233 q^4-730 q^3-3566 q^2-4497 q-2339+596 q^{-1} +3437 q^{-2} +4481 q^{-3} +2486 q^{-4} -398 q^{-5} -3297 q^{-6} -4431 q^{-7} -2556 q^{-8} +194 q^{-9} +3011 q^{-10} +4263 q^{-11} +2666 q^{-12} +81 q^{-13} -2708 q^{-14} -4040 q^{-15} -2651 q^{-16} -333 q^{-17} +2251 q^{-18} +3675 q^{-19} +2636 q^{-20} +618 q^{-21} -1817 q^{-22} -3250 q^{-23} -2449 q^{-24} -819 q^{-25} +1279 q^{-26} +2701 q^{-27} +2262 q^{-28} +983 q^{-29} -853 q^{-30} -2162 q^{-31} -1892 q^{-32} -1008 q^{-33} +393 q^{-34} +1587 q^{-35} +1567 q^{-36} +988 q^{-37} -138 q^{-38} -1116 q^{-39} -1131 q^{-40} -838 q^{-41} -98 q^{-42} +682 q^{-43} +818 q^{-44} +686 q^{-45} +161 q^{-46} -414 q^{-47} -495 q^{-48} -478 q^{-49} -196 q^{-50} +201 q^{-51} +287 q^{-52} +334 q^{-53} +160 q^{-54} -103 q^{-55} -149 q^{-56} -195 q^{-57} -108 q^{-58} +41 q^{-59} +57 q^{-60} +108 q^{-61} +84 q^{-62} -17 q^{-63} -34 q^{-64} -60 q^{-65} -34 q^{-66} +16 q^{-67} -2 q^{-68} +23 q^{-69} +27 q^{-70} -6 q^{-72} -17 q^{-73} -7 q^{-74} +9 q^{-75} -3 q^{-76} +7 q^{-78} -5 q^{-81} +3 q^{-83} - q^{-84} </math>}} |
|||
coloured_jones_4 = <math>q^{40}-2 q^{39}-q^{38}+2 q^{37}+q^{36}+6 q^{35}-8 q^{34}-7 q^{33}+2 q^{32}+4 q^{31}+25 q^{30}-14 q^{29}-23 q^{28}-10 q^{27}+3 q^{26}+62 q^{25}-7 q^{24}-38 q^{23}-39 q^{22}-16 q^{21}+106 q^{20}+17 q^{19}-39 q^{18}-76 q^{17}-54 q^{16}+141 q^{15}+50 q^{14}-24 q^{13}-109 q^{12}-98 q^{11}+162 q^{10}+79 q^9-4 q^8-129 q^7-131 q^6+167 q^5+98 q^4+16 q^3-136 q^2-149 q+156+103 q^{-1} +31 q^{-2} -125 q^{-3} -147 q^{-4} +125 q^{-5} +90 q^{-6} +44 q^{-7} -93 q^{-8} -127 q^{-9} +82 q^{-10} +61 q^{-11} +47 q^{-12} -50 q^{-13} -90 q^{-14} +40 q^{-15} +28 q^{-16} +36 q^{-17} -17 q^{-18} -47 q^{-19} +15 q^{-20} +6 q^{-21} +17 q^{-22} -2 q^{-23} -16 q^{-24} +3 q^{-25} +5 q^{-27} -3 q^{-29} + q^{-30} </math> | |
|||
coloured_jones_5 = <math>q^{60}-2 q^{59}-q^{58}+2 q^{57}+q^{56}+2 q^{55}+2 q^{54}-6 q^{53}-9 q^{52}+2 q^{51}+7 q^{50}+12 q^{49}+11 q^{48}-11 q^{47}-29 q^{46}-19 q^{45}+9 q^{44}+39 q^{43}+45 q^{42}+3 q^{41}-56 q^{40}-72 q^{39}-26 q^{38}+60 q^{37}+109 q^{36}+61 q^{35}-55 q^{34}-141 q^{33}-110 q^{32}+33 q^{31}+173 q^{30}+162 q^{29}-189 q^{27}-221 q^{26}-45 q^{25}+197 q^{24}+278 q^{23}+96 q^{22}-198 q^{21}-324 q^{20}-149 q^{19}+187 q^{18}+368 q^{17}+202 q^{16}-180 q^{15}-400 q^{14}-242 q^{13}+159 q^{12}+427 q^{11}+283 q^{10}-147 q^9-446 q^8-311 q^7+132 q^6+452 q^5+335 q^4-111 q^3-455 q^2-353 q+98+441 q^{-1} +354 q^{-2} -62 q^{-3} -420 q^{-4} -363 q^{-5} +49 q^{-6} +378 q^{-7} +341 q^{-8} - q^{-9} -335 q^{-10} -330 q^{-11} -11 q^{-12} +269 q^{-13} +283 q^{-14} +55 q^{-15} -211 q^{-16} -253 q^{-17} -50 q^{-18} +141 q^{-19} +190 q^{-20} +76 q^{-21} -95 q^{-22} -149 q^{-23} -55 q^{-24} +50 q^{-25} +91 q^{-26} +56 q^{-27} -24 q^{-28} -63 q^{-29} -33 q^{-30} +9 q^{-31} +32 q^{-32} +21 q^{-33} -15 q^{-35} -17 q^{-36} +2 q^{-37} +9 q^{-38} +4 q^{-39} -5 q^{-42} +3 q^{-44} - q^{-45} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{84}-2 q^{83}-q^{82}+2 q^{81}+q^{80}+2 q^{79}-2 q^{78}+4 q^{77}-8 q^{76}-9 q^{75}+5 q^{74}+6 q^{73}+12 q^{72}+q^{71}+15 q^{70}-24 q^{69}-35 q^{68}-8 q^{67}+8 q^{66}+37 q^{65}+27 q^{64}+67 q^{63}-35 q^{62}-88 q^{61}-70 q^{60}-36 q^{59}+47 q^{58}+79 q^{57}+200 q^{56}+22 q^{55}-116 q^{54}-179 q^{53}-170 q^{52}-41 q^{51}+90 q^{50}+398 q^{49}+192 q^{48}-23 q^{47}-249 q^{46}-364 q^{45}-271 q^{44}-38 q^{43}+560 q^{42}+435 q^{41}+224 q^{40}-184 q^{39}-517 q^{38}-591 q^{37}-318 q^{36}+595 q^{35}+650 q^{34}+561 q^{33}+16 q^{32}-556 q^{31}-899 q^{30}-672 q^{29}+511 q^{28}+775 q^{27}+886 q^{26}+275 q^{25}-498 q^{24}-1130 q^{23}-1000 q^{22}+373 q^{21}+823 q^{20}+1137 q^{19}+507 q^{18}-404 q^{17}-1281 q^{16}-1245 q^{15}+243 q^{14}+828 q^{13}+1305 q^{12}+674 q^{11}-315 q^{10}-1362 q^9-1398 q^8+133 q^7+804 q^6+1395 q^5+787 q^4-225 q^3-1371 q^2-1467 q+18+729 q^{-1} +1400 q^{-2} +862 q^{-3} -102 q^{-4} -1279 q^{-5} -1449 q^{-6} -118 q^{-7} +572 q^{-8} +1288 q^{-9} +890 q^{-10} +66 q^{-11} -1058 q^{-12} -1311 q^{-13} -249 q^{-14} +332 q^{-15} +1031 q^{-16} +825 q^{-17} +241 q^{-18} -724 q^{-19} -1034 q^{-20} -312 q^{-21} +76 q^{-22} +669 q^{-23} +640 q^{-24} +335 q^{-25} -373 q^{-26} -667 q^{-27} -264 q^{-28} -90 q^{-29} +321 q^{-30} +383 q^{-31} +299 q^{-32} -127 q^{-33} -331 q^{-34} -145 q^{-35} -122 q^{-36} +100 q^{-37} +161 q^{-38} +183 q^{-39} -22 q^{-40} -124 q^{-41} -44 q^{-42} -74 q^{-43} +14 q^{-44} +44 q^{-45} +79 q^{-46} - q^{-47} -35 q^{-48} -6 q^{-49} -27 q^{-50} +6 q^{-52} +26 q^{-53} -2 q^{-54} -9 q^{-55} +3 q^{-56} -7 q^{-57} +5 q^{-60} -3 q^{-62} + q^{-63} </math> | |
|||
coloured_jones_7 = <math>q^{112}-2 q^{111}-q^{110}+2 q^{109}+q^{108}+2 q^{107}-2 q^{106}+2 q^{104}-8 q^{103}-6 q^{102}+4 q^{101}+6 q^{100}+14 q^{99}+2 q^{98}-2 q^{97}+5 q^{96}-27 q^{95}-28 q^{94}-9 q^{93}+8 q^{92}+49 q^{91}+37 q^{90}+25 q^{89}+25 q^{88}-58 q^{87}-93 q^{86}-81 q^{85}-53 q^{84}+76 q^{83}+123 q^{82}+140 q^{81}+149 q^{80}-30 q^{79}-165 q^{78}-250 q^{77}-275 q^{76}-44 q^{75}+154 q^{74}+325 q^{73}+461 q^{72}+217 q^{71}-77 q^{70}-391 q^{69}-661 q^{68}-446 q^{67}-101 q^{66}+368 q^{65}+854 q^{64}+741 q^{63}+372 q^{62}-239 q^{61}-984 q^{60}-1057 q^{59}-750 q^{58}-4 q^{57}+1036 q^{56}+1344 q^{55}+1174 q^{54}+369 q^{53}-956 q^{52}-1583 q^{51}-1633 q^{50}-821 q^{49}+776 q^{48}+1739 q^{47}+2061 q^{46}+1329 q^{45}-498 q^{44}-1789 q^{43}-2451 q^{42}-1857 q^{41}+147 q^{40}+1772 q^{39}+2782 q^{38}+2352 q^{37}+228 q^{36}-1684 q^{35}-3024 q^{34}-2818 q^{33}-617 q^{32}+1557 q^{31}+3231 q^{30}+3224 q^{29}+954 q^{28}-1422 q^{27}-3361 q^{26}-3554 q^{25}-1278 q^{24}+1274 q^{23}+3479 q^{22}+3840 q^{21}+1535 q^{20}-1168 q^{19}-3540 q^{18}-4050 q^{17}-1755 q^{16}+1044 q^{15}+3592 q^{14}+4235 q^{13}+1934 q^{12}-955 q^{11}-3618 q^{10}-4354 q^9-2082 q^8+849 q^7+3599 q^6+4443 q^5+2233 q^4-730 q^3-3566 q^2-4497 q-2339+596 q^{-1} +3437 q^{-2} +4481 q^{-3} +2486 q^{-4} -398 q^{-5} -3297 q^{-6} -4431 q^{-7} -2556 q^{-8} +194 q^{-9} +3011 q^{-10} +4263 q^{-11} +2666 q^{-12} +81 q^{-13} -2708 q^{-14} -4040 q^{-15} -2651 q^{-16} -333 q^{-17} +2251 q^{-18} +3675 q^{-19} +2636 q^{-20} +618 q^{-21} -1817 q^{-22} -3250 q^{-23} -2449 q^{-24} -819 q^{-25} +1279 q^{-26} +2701 q^{-27} +2262 q^{-28} +983 q^{-29} -853 q^{-30} -2162 q^{-31} -1892 q^{-32} -1008 q^{-33} +393 q^{-34} +1587 q^{-35} +1567 q^{-36} +988 q^{-37} -138 q^{-38} -1116 q^{-39} -1131 q^{-40} -838 q^{-41} -98 q^{-42} +682 q^{-43} +818 q^{-44} +686 q^{-45} +161 q^{-46} -414 q^{-47} -495 q^{-48} -478 q^{-49} -196 q^{-50} +201 q^{-51} +287 q^{-52} +334 q^{-53} +160 q^{-54} -103 q^{-55} -149 q^{-56} -195 q^{-57} -108 q^{-58} +41 q^{-59} +57 q^{-60} +108 q^{-61} +84 q^{-62} -17 q^{-63} -34 q^{-64} -60 q^{-65} -34 q^{-66} +16 q^{-67} -2 q^{-68} +23 q^{-69} +27 q^{-70} -6 q^{-72} -17 q^{-73} -7 q^{-74} +9 q^{-75} -3 q^{-76} +7 q^{-78} -5 q^{-81} +3 q^{-83} - q^{-84} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[7, 7]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[7, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[11, 14, 12, 1], X[7, 13, 8, 12], X[13, 7, 14, 6]]</nowiki></ |
X[11, 14, 12, 1], X[7, 13, 8, 12], X[13, 7, 14, 6]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 7]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[7, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[7, 7]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[7, 7]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, 1, -2, 3, -2, 3}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[7, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 7}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 12, 2, 14, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[7, 7]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:7_7_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[7, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[7, 7]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, -2, 1, -2, 3, -2, 3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 7]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 5 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 7}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[7, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[7, 7]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:7_7_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[7, 7]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, 4, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[7, 7]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 5 2 |
|||
9 + t - - - 5 t + t |
9 + t - - - 5 t + t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 7]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[7, 7]][z]</nowiki></code></td></tr> |
|||
1 - z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 - z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[7, 7]], KnotSignature[Knot[7, 7]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{21, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 3 2 3 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 7], Knot[11, NonAlternating, 28]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[7, 7]], KnotSignature[Knot[7, 7]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{21, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[7, 7]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 3 2 3 4 |
|||
4 - q + -- - - - 4 q + 3 q - 2 q + q |
4 - q + -- - - - 4 q + 3 q - 2 q + q |
||
2 q |
2 q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[7, 7]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 7]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[7, 7]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -8 -6 2 2 4 6 10 12 14 |
|||
-q + q + q + -- + q - q - q - q + q + q |
-q + q + q + -- + q - q - q - q + q + q |
||
2 |
2 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[7, 7]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[7, 7]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-4 2 2 2 z 2 2 4 |
-4 2 2 2 z 2 2 4 |
||
2 + a - -- + 2 z - ---- - a z + z |
2 + a - -- + 2 z - ---- - a z + z |
||
2 2 |
2 2 |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 7]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[7, 7]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 3 |
|||
-4 2 2 z 3 z 2 2 z 6 z 2 2 4 z |
-4 2 2 z 3 z 2 2 z 6 z 2 2 4 z |
||
2 + a + -- + --- + --- + a z - 7 z - ---- - ---- - 3 a z - ---- - |
2 + a + -- + --- + --- + a z - 7 z - ---- - ---- - 3 a z - ---- - |
||
Line 162: | Line 203: | ||
3 a z + z + -- |
3 a z + z + -- |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 7]], Vassiliev[3][Knot[7, 7]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[7, 7]], Vassiliev[3][Knot[7, 7]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[7, 7]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[7, 7]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 1 2 1 1 2 3 3 2 |
|||
- + 2 q + ----- + ----- + ----- + ---- + --- + 2 q t + 2 q t + q t + |
- + 2 q + ----- + ----- + ----- + ---- + --- + 2 q t + 2 q t + q t + |
||
q 7 3 5 2 3 2 3 q t |
q 7 3 5 2 3 2 3 q t |
||
Line 174: | Line 223: | ||
5 2 5 3 7 3 9 4 |
5 2 5 3 7 3 9 4 |
||
2 q t + q t + q t + q t</nowiki></ |
2 q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[7, 7], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[7, 7], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 3 8 9 2 16 14 5 2 3 |
|||
21 + q - -- + -- - -- - -- + -- - -- - - - 15 q - 7 q + 20 q - |
21 + q - -- + -- - -- - -- + -- - -- - - - 15 q - 7 q + 20 q - |
||
8 6 5 4 3 2 q |
8 6 5 4 3 2 q |
||
Line 183: | Line 236: | ||
4 5 6 7 8 9 10 11 12 |
4 5 6 7 8 9 10 11 12 |
||
11 q - 7 q + 14 q - 5 q - 5 q + 6 q - q - 2 q + q</nowiki></ |
11 q - 7 q + 14 q - 5 q - 5 q + 6 q - q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:02, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 7 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X11,14,12,1 X7,13,8,12 X13,7,14,6 |
Gauss code | -1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5 |
Dowker-Thistlethwaite code | 4 8 10 12 2 14 6 |
Conway Notation | [21112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 7, width is 4, Braid index is 4 |
[{9, 3}, {2, 7}, {8, 4}, {3, 5}, {7, 9}, {4, 1}, {6, 2}, {5, 8}, {1, 6}] |
[edit Notes on presentations of 7 7]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["7 7"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X11,14,12,1 X7,13,8,12 X13,7,14,6 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 12 2 14 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[21112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 7, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 3}, {2, 7}, {8, 4}, {3, 5}, {7, 9}, {4, 1}, {6, 2}, {5, 8}, {1, 6}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 7"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 21, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n28,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["7 7"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n28,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 7 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|