8 1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 8 |
<!-- provide an anchor so we can return to the top of the page -->
k = 1 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,8,-6,7,-2,3,-4,2,-7,6,-8,5/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=8|k=1|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,8,-6,7,-2,3,-4,2,-7,6,-8,5/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 26: Line 15:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 10, width is 5.
braid_index = 5 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = [[K11n70]], |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{[[K11n70]], ...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=15.3846%>&chi;</td></tr>
<td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
Line 71: Line 39:
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^6-q^5+2 q^3-2 q^2+2-3 q^{-1} + q^{-2} +2 q^{-3} -3 q^{-4} + q^{-5} +3 q^{-6} -3 q^{-7} +3 q^{-9} -3 q^{-10} +3 q^{-12} -2 q^{-13} - q^{-14} +2 q^{-15} - q^{-16} - q^{-17} + q^{-18} </math> |

coloured_jones_3 = <math>q^{12}-q^{11}+2 q^8-2 q^7-q^6+3 q^4-q^3-2 q^2-q+4-2 q^{-2} -2 q^{-3} +3 q^{-4} +2 q^{-5} -2 q^{-6} - q^{-7} +2 q^{-8} + q^{-9} -3 q^{-10} +2 q^{-12} -3 q^{-14} + q^{-15} +2 q^{-16} - q^{-17} -2 q^{-18} +2 q^{-19} +2 q^{-20} -2 q^{-21} -2 q^{-22} +2 q^{-23} +2 q^{-24} -2 q^{-25} -2 q^{-26} + q^{-27} +3 q^{-28} - q^{-29} -2 q^{-30} +2 q^{-32} - q^{-34} - q^{-35} + q^{-36} </math> |
{{Display Coloured Jones|J2=<math>q^6-q^5+2 q^3-2 q^2+2-3 q^{-1} + q^{-2} +2 q^{-3} -3 q^{-4} + q^{-5} +3 q^{-6} -3 q^{-7} +3 q^{-9} -3 q^{-10} +3 q^{-12} -2 q^{-13} - q^{-14} +2 q^{-15} - q^{-16} - q^{-17} + q^{-18} </math>|J3=<math>q^{12}-q^{11}+2 q^8-2 q^7-q^6+3 q^4-q^3-2 q^2-q+4-2 q^{-2} -2 q^{-3} +3 q^{-4} +2 q^{-5} -2 q^{-6} - q^{-7} +2 q^{-8} + q^{-9} -3 q^{-10} +2 q^{-12} -3 q^{-14} + q^{-15} +2 q^{-16} - q^{-17} -2 q^{-18} +2 q^{-19} +2 q^{-20} -2 q^{-21} -2 q^{-22} +2 q^{-23} +2 q^{-24} -2 q^{-25} -2 q^{-26} + q^{-27} +3 q^{-28} - q^{-29} -2 q^{-30} +2 q^{-32} - q^{-34} - q^{-35} + q^{-36} </math>|J4=<math>q^{20}-q^{19}+2 q^{15}-3 q^{14}+q^{11}+4 q^{10}-5 q^9-q^8-q^7+3 q^6+7 q^5-7 q^4-3 q^3-2 q^2+6 q+10-9 q^{-1} -5 q^{-2} -4 q^{-3} +7 q^{-4} +12 q^{-5} -8 q^{-6} -6 q^{-7} -6 q^{-8} +7 q^{-9} +12 q^{-10} -8 q^{-11} -5 q^{-12} -5 q^{-13} +6 q^{-14} +11 q^{-15} -8 q^{-16} -4 q^{-17} -4 q^{-18} +5 q^{-19} +11 q^{-20} -8 q^{-21} -3 q^{-22} -3 q^{-23} +3 q^{-24} +10 q^{-25} -7 q^{-26} -2 q^{-27} -2 q^{-28} + q^{-29} +8 q^{-30} -6 q^{-31} - q^{-32} - q^{-33} +6 q^{-35} -5 q^{-36} +5 q^{-40} -5 q^{-41} +5 q^{-45} -4 q^{-46} - q^{-47} - q^{-48} +5 q^{-50} -2 q^{-51} - q^{-52} - q^{-53} - q^{-54} +3 q^{-55} - q^{-58} - q^{-59} + q^{-60} </math>|J5=<math>q^{30}-q^{29}+q^{24}-2 q^{23}+q^{21}+q^{19}+q^{18}-4 q^{17}-q^{16}+2 q^{15}+2 q^{14}+2 q^{13}+q^{12}-6 q^{11}-3 q^{10}+4 q^9+4 q^8+3 q^7-2 q^6-8 q^5-3 q^4+6 q^3+7 q^2+3 q-5-11 q^{-1} -3 q^{-2} +9 q^{-3} +9 q^{-4} +4 q^{-5} -7 q^{-6} -13 q^{-7} -5 q^{-8} +9 q^{-9} +12 q^{-10} +5 q^{-11} -7 q^{-12} -13 q^{-13} -5 q^{-14} +7 q^{-15} +13 q^{-16} +5 q^{-17} -7 q^{-18} -11 q^{-19} -4 q^{-20} +5 q^{-21} +12 q^{-22} +4 q^{-23} -6 q^{-24} -10 q^{-25} -5 q^{-26} +4 q^{-27} +11 q^{-28} +5 q^{-29} -4 q^{-30} -10 q^{-31} -6 q^{-32} +3 q^{-33} +10 q^{-34} +6 q^{-35} -2 q^{-36} -9 q^{-37} -7 q^{-38} +2 q^{-39} +8 q^{-40} +6 q^{-41} -7 q^{-43} -7 q^{-44} +6 q^{-46} +6 q^{-47} + q^{-48} -4 q^{-49} -5 q^{-50} -2 q^{-51} +3 q^{-52} +5 q^{-53} + q^{-54} -2 q^{-55} -3 q^{-56} -2 q^{-57} + q^{-58} +3 q^{-59} + q^{-60} - q^{-61} -2 q^{-62} - q^{-63} + q^{-64} +2 q^{-65} + q^{-66} - q^{-67} -2 q^{-68} - q^{-69} +3 q^{-71} +2 q^{-72} - q^{-73} -2 q^{-74} -2 q^{-75} - q^{-76} +2 q^{-77} +3 q^{-78} - q^{-80} - q^{-81} -2 q^{-82} +2 q^{-84} + q^{-85} - q^{-88} - q^{-89} + q^{-90} </math>|J6=<math>q^{42}-q^{41}-q^{36}+2 q^{35}-2 q^{34}+q^{33}+q^{30}-2 q^{29}+2 q^{28}-4 q^{27}+2 q^{26}+q^{25}+q^{24}+3 q^{23}-3 q^{22}+q^{21}-7 q^{20}+3 q^{19}+q^{18}+2 q^{17}+5 q^{16}-4 q^{15}+q^{14}-9 q^{13}+5 q^{12}+q^{10}+5 q^9-5 q^8+3 q^7-8 q^6+8 q^5-2 q^4-3 q^3+3 q^2-6 q+6-5 q^{-1} +13 q^{-2} -3 q^{-3} -6 q^{-4} -9 q^{-6} +6 q^{-7} -3 q^{-8} +18 q^{-9} -2 q^{-10} -6 q^{-11} - q^{-12} -12 q^{-13} +3 q^{-14} -3 q^{-15} +20 q^{-16} - q^{-17} -5 q^{-18} -11 q^{-20} +2 q^{-21} -4 q^{-22} +18 q^{-23} -2 q^{-24} -5 q^{-25} + q^{-26} -10 q^{-27} +3 q^{-28} -5 q^{-29} +16 q^{-30} -2 q^{-31} -4 q^{-32} +2 q^{-33} -9 q^{-34} +3 q^{-35} -7 q^{-36} +14 q^{-37} - q^{-39} +3 q^{-40} -9 q^{-41} +2 q^{-42} -10 q^{-43} +11 q^{-44} +3 q^{-45} +2 q^{-46} +4 q^{-47} -9 q^{-48} -13 q^{-50} +9 q^{-51} +5 q^{-52} +5 q^{-53} +5 q^{-54} -9 q^{-55} - q^{-56} -15 q^{-57} +6 q^{-58} +6 q^{-59} +7 q^{-60} +7 q^{-61} -7 q^{-62} - q^{-63} -15 q^{-64} +2 q^{-65} +4 q^{-66} +7 q^{-67} +8 q^{-68} -4 q^{-69} + q^{-70} -14 q^{-71} - q^{-72} + q^{-73} +5 q^{-74} +7 q^{-75} - q^{-76} +5 q^{-77} -11 q^{-78} -2 q^{-79} - q^{-80} +2 q^{-81} +4 q^{-82} +7 q^{-84} -8 q^{-85} - q^{-86} - q^{-87} + q^{-89} +7 q^{-91} -7 q^{-92} +7 q^{-98} -6 q^{-99} - q^{-100} - q^{-101} + q^{-104} +7 q^{-105} -4 q^{-106} - q^{-107} -2 q^{-108} - q^{-109} - q^{-110} +6 q^{-112} - q^{-113} - q^{-115} - q^{-116} -2 q^{-117} - q^{-118} +3 q^{-119} + q^{-121} - q^{-124} - q^{-125} + q^{-126} </math>|J7=Not Available}}
coloured_jones_4 = <math>q^{20}-q^{19}+2 q^{15}-3 q^{14}+q^{11}+4 q^{10}-5 q^9-q^8-q^7+3 q^6+7 q^5-7 q^4-3 q^3-2 q^2+6 q+10-9 q^{-1} -5 q^{-2} -4 q^{-3} +7 q^{-4} +12 q^{-5} -8 q^{-6} -6 q^{-7} -6 q^{-8} +7 q^{-9} +12 q^{-10} -8 q^{-11} -5 q^{-12} -5 q^{-13} +6 q^{-14} +11 q^{-15} -8 q^{-16} -4 q^{-17} -4 q^{-18} +5 q^{-19} +11 q^{-20} -8 q^{-21} -3 q^{-22} -3 q^{-23} +3 q^{-24} +10 q^{-25} -7 q^{-26} -2 q^{-27} -2 q^{-28} + q^{-29} +8 q^{-30} -6 q^{-31} - q^{-32} - q^{-33} +6 q^{-35} -5 q^{-36} +5 q^{-40} -5 q^{-41} +5 q^{-45} -4 q^{-46} - q^{-47} - q^{-48} +5 q^{-50} -2 q^{-51} - q^{-52} - q^{-53} - q^{-54} +3 q^{-55} - q^{-58} - q^{-59} + q^{-60} </math> |

coloured_jones_5 = <math>q^{30}-q^{29}+q^{24}-2 q^{23}+q^{21}+q^{19}+q^{18}-4 q^{17}-q^{16}+2 q^{15}+2 q^{14}+2 q^{13}+q^{12}-6 q^{11}-3 q^{10}+4 q^9+4 q^8+3 q^7-2 q^6-8 q^5-3 q^4+6 q^3+7 q^2+3 q-5-11 q^{-1} -3 q^{-2} +9 q^{-3} +9 q^{-4} +4 q^{-5} -7 q^{-6} -13 q^{-7} -5 q^{-8} +9 q^{-9} +12 q^{-10} +5 q^{-11} -7 q^{-12} -13 q^{-13} -5 q^{-14} +7 q^{-15} +13 q^{-16} +5 q^{-17} -7 q^{-18} -11 q^{-19} -4 q^{-20} +5 q^{-21} +12 q^{-22} +4 q^{-23} -6 q^{-24} -10 q^{-25} -5 q^{-26} +4 q^{-27} +11 q^{-28} +5 q^{-29} -4 q^{-30} -10 q^{-31} -6 q^{-32} +3 q^{-33} +10 q^{-34} +6 q^{-35} -2 q^{-36} -9 q^{-37} -7 q^{-38} +2 q^{-39} +8 q^{-40} +6 q^{-41} -7 q^{-43} -7 q^{-44} +6 q^{-46} +6 q^{-47} + q^{-48} -4 q^{-49} -5 q^{-50} -2 q^{-51} +3 q^{-52} +5 q^{-53} + q^{-54} -2 q^{-55} -3 q^{-56} -2 q^{-57} + q^{-58} +3 q^{-59} + q^{-60} - q^{-61} -2 q^{-62} - q^{-63} + q^{-64} +2 q^{-65} + q^{-66} - q^{-67} -2 q^{-68} - q^{-69} +3 q^{-71} +2 q^{-72} - q^{-73} -2 q^{-74} -2 q^{-75} - q^{-76} +2 q^{-77} +3 q^{-78} - q^{-80} - q^{-81} -2 q^{-82} +2 q^{-84} + q^{-85} - q^{-88} - q^{-89} + q^{-90} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{42}-q^{41}-q^{36}+2 q^{35}-2 q^{34}+q^{33}+q^{30}-2 q^{29}+2 q^{28}-4 q^{27}+2 q^{26}+q^{25}+q^{24}+3 q^{23}-3 q^{22}+q^{21}-7 q^{20}+3 q^{19}+q^{18}+2 q^{17}+5 q^{16}-4 q^{15}+q^{14}-9 q^{13}+5 q^{12}+q^{10}+5 q^9-5 q^8+3 q^7-8 q^6+8 q^5-2 q^4-3 q^3+3 q^2-6 q+6-5 q^{-1} +13 q^{-2} -3 q^{-3} -6 q^{-4} -9 q^{-6} +6 q^{-7} -3 q^{-8} +18 q^{-9} -2 q^{-10} -6 q^{-11} - q^{-12} -12 q^{-13} +3 q^{-14} -3 q^{-15} +20 q^{-16} - q^{-17} -5 q^{-18} -11 q^{-20} +2 q^{-21} -4 q^{-22} +18 q^{-23} -2 q^{-24} -5 q^{-25} + q^{-26} -10 q^{-27} +3 q^{-28} -5 q^{-29} +16 q^{-30} -2 q^{-31} -4 q^{-32} +2 q^{-33} -9 q^{-34} +3 q^{-35} -7 q^{-36} +14 q^{-37} - q^{-39} +3 q^{-40} -9 q^{-41} +2 q^{-42} -10 q^{-43} +11 q^{-44} +3 q^{-45} +2 q^{-46} +4 q^{-47} -9 q^{-48} -13 q^{-50} +9 q^{-51} +5 q^{-52} +5 q^{-53} +5 q^{-54} -9 q^{-55} - q^{-56} -15 q^{-57} +6 q^{-58} +6 q^{-59} +7 q^{-60} +7 q^{-61} -7 q^{-62} - q^{-63} -15 q^{-64} +2 q^{-65} +4 q^{-66} +7 q^{-67} +8 q^{-68} -4 q^{-69} + q^{-70} -14 q^{-71} - q^{-72} + q^{-73} +5 q^{-74} +7 q^{-75} - q^{-76} +5 q^{-77} -11 q^{-78} -2 q^{-79} - q^{-80} +2 q^{-81} +4 q^{-82} +7 q^{-84} -8 q^{-85} - q^{-86} - q^{-87} + q^{-89} +7 q^{-91} -7 q^{-92} +7 q^{-98} -6 q^{-99} - q^{-100} - q^{-101} + q^{-104} +7 q^{-105} -4 q^{-106} - q^{-107} -2 q^{-108} - q^{-109} - q^{-110} +6 q^{-112} - q^{-113} - q^{-115} - q^{-116} -2 q^{-117} - q^{-118} +3 q^{-119} + q^{-121} - q^{-124} - q^{-125} + q^{-126} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 1]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 1]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[5, 16, 6, 1], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7]]</nowiki></pre></td></tr>
X[5, 16, 6, 1], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 8, -6, 7, -2, 3, -4, 2, -7, 6, -8, 5]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 1]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 16, 14, 12, 2, 8, 6]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -5, 8, -6, 7, -2, 3, -4, 2, -7, 6, -8, 5]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 1]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, -2, 1, -2, -3, 2, 4, -3, 4}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 1]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 1]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 16, 14, 12, 2, 8, 6]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 1]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 1]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 1, 2, {4, 5}, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, -2, 1, -2, -3, 2, 4, -3, 4}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 1]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 1]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 1]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:8_1_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 1]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 1, 2, {4, 5}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 1]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3
7 - - - 3 t
7 - - - 3 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 1]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 1]][z]</nowiki></code></td></tr>
1 - 3 z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 1]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
1 - 3 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 1]], KnotSignature[Knot[8, 1]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{13, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 1]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -5 -4 2 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 1]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 1]], KnotSignature[Knot[8, 1]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{13, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 1]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -5 -4 2 2 2 2
2 + q - q + q - -- + -- - - - q + q
2 + q - q + q - -- + -- - - - q + q
3 2 q
3 2 q
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 1], Knot[11, NonAlternating, 70]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 1]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 -12 -10 2 6 8
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 1], Knot[11, NonAlternating, 70]}</nowiki></code></td></tr>
q + q - q - q + q + q + q</nowiki></pre></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 6 2 2 2 4 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 1]][q]</nowiki></code></td></tr>
a - a + a - z - a z - a z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 1]][a, z]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 -18 -12 -10 2 6 8
q + q - q - q + q + q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 4 6 2 2 2 4 2
a - a + a - z - a z - a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 1]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3
-2 4 6 3 5 z 4 2 6 2 z 3
-2 4 6 3 5 z 4 2 6 2 z 3
-a - a - a - 3 a z - 3 a z + -- + 7 a z + 6 a z + -- - a z +
-a - a - a - 3 a z - 3 a z + -- + 7 a z + 6 a z + -- - a z +
Line 152: Line 194:
3 5 5 5 2 6 4 6 6 6 3 7 5 7
3 5 5 5 2 6 4 6 6 6 3 7 5 7
4 a z - 5 a z + a z + 2 a z + a z + a z + a z</nowiki></pre></td></tr>
4 a z - 5 a z + a z + 2 a z + a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 1]], Vassiliev[3][Knot[8, 1]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, 3}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 1]], Vassiliev[3][Knot[8, 1]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 1]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1 1 1 1 1 1 1 1
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, 3}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 1]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1 1 1 1 1 1 1 1
- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 13 6 9 5 9 4 7 3 5 3 5 2 3 2
q 13 6 9 5 9 4 7 3 5 3 5 2 3 2
Line 166: Line 216:
---- + --- + q t + q t
---- + --- + q t + q t
3 q t
3 q t
q t</nowiki></pre></td></tr>
q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 1], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -17 -16 2 -14 2 3 3 3 3 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 1], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -18 -17 -16 2 -14 2 3 3 3 3 3
2 + q - q - q + --- - q - --- + --- - --- + -- - -- + -- +
2 + q - q - q + --- - q - --- + --- - --- + -- - -- + -- +
15 13 12 10 9 7 6
15 13 12 10 9 7 6
Line 177: Line 231:
q - -- + -- + q - - - 2 q + 2 q - q + q
q - -- + -- + q - - - 2 q + 2 q - q + q
4 3 q
4 3 q
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:00, 1 September 2005

7 7.gif

7_7

8 2.gif

8_2

8 1.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 1 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,16,6,1 X7,14,8,15 X13,8,14,9 X15,6,16,7
Gauss code -1, 4, -3, 1, -5, 8, -6, 7, -2, 3, -4, 2, -7, 6, -8, 5
Dowker-Thistlethwaite code 4 10 16 14 12 2 8 6
Conway Notation [62]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

8 1 ML.gif 8 1 AP.gif
[{10, 7}, {6, 8}, {7, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 1}, {9, 2}, {8, 10}, {1, 9}]

[edit Notes on presentations of 8 1]

Knot 8_1.
A graph, knot 8_1.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-7][-3]
Hyperbolic Volume 3.42721
A-Polynomial See Data:8 1/A-polynomial

[edit Notes for 8 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 13, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {K11n70,}

Vassiliev invariants

V2 and V3: (-3, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012χ
5        11
3         0
1      21 1
-1     11  0
-3    11   0
-5   11    0
-7   1     -1
-9 11      0
-11         0
-131        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials