8 2
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X9,16,10,1 X13,6,14,7 X15,8,16,9 |
| Gauss code | -1, 4, -3, 1, -2, 7, -5, 8, -6, 3, -4, 2, -7, 5, -8, 6 |
| Dowker-Thistlethwaite code | 4 10 12 14 16 2 6 8 |
| Conway Notation | [512] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
|
![]() [{10, 2}, {1, 8}, {9, 3}, {2, 4}, {8, 10}, {3, 5}, {4, 6}, {5, 7}, {6, 9}, {7, 1}] |
[edit Notes on presentations of 8 2]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 2"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X9,16,10,1 X13,6,14,7 X15,8,16,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 7, -5, 8, -6, 3, -4, 2, -7, 5, -8, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 14 16 2 6 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[512] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{10, 2}, {1, 8}, {9, 3}, {2, 4}, {8, 10}, {3, 5}, {4, 6}, {5, 7}, {6, 9}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | |
| 3,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n6,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 2"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n6,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 8 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{30}-q^{29}-q^{28}+q^{25}+4 q^{23}-q^{22}-3 q^{21}-2 q^{20}-2 q^{19}-q^{17}+10 q^{16}+2 q^{15}-q^{14}-3 q^{13}-5 q^{12}-4 q^{11}-8 q^{10}+13 q^9+5 q^8+4 q^7+q^6-3 q^5-6 q^4-16 q^3+11 q^2+2 q+6+3 q^{-1} +3 q^{-2} -2 q^{-3} -19 q^{-4} +12 q^{-5} -2 q^{-6} +4 q^{-7} - q^{-8} +3 q^{-9} -19 q^{-11} +18 q^{-12} + q^{-13} +8 q^{-14} -5 q^{-15} -2 q^{-16} -6 q^{-17} -26 q^{-18} +20 q^{-19} +8 q^{-20} +21 q^{-21} -3 q^{-23} -14 q^{-24} -42 q^{-25} +11 q^{-26} +10 q^{-27} +35 q^{-28} +13 q^{-29} +6 q^{-30} -16 q^{-31} -57 q^{-32} -5 q^{-33} +3 q^{-34} +42 q^{-35} +25 q^{-36} +21 q^{-37} -8 q^{-38} -65 q^{-39} -20 q^{-40} -10 q^{-41} +40 q^{-42} +30 q^{-43} +35 q^{-44} +6 q^{-45} -65 q^{-46} -30 q^{-47} -23 q^{-48} +33 q^{-49} +29 q^{-50} +45 q^{-51} +22 q^{-52} -60 q^{-53} -35 q^{-54} -34 q^{-55} +23 q^{-56} +25 q^{-57} +51 q^{-58} +38 q^{-59} -54 q^{-60} -40 q^{-61} -42 q^{-62} +15 q^{-63} +23 q^{-64} +55 q^{-65} +48 q^{-66} -49 q^{-67} -47 q^{-68} -49 q^{-69} +11 q^{-70} +25 q^{-71} +62 q^{-72} +56 q^{-73} -49 q^{-74} -56 q^{-75} -57 q^{-76} +7 q^{-77} +29 q^{-78} +70 q^{-79} +64 q^{-80} -45 q^{-81} -60 q^{-82} -64 q^{-83} - q^{-84} +25 q^{-85} +70 q^{-86} +68 q^{-87} -33 q^{-88} -50 q^{-89} -61 q^{-90} -8 q^{-91} +13 q^{-92} +56 q^{-93} +59 q^{-94} -23 q^{-95} -32 q^{-96} -45 q^{-97} -4 q^{-98} +3 q^{-99} +37 q^{-100} +40 q^{-101} -23 q^{-102} -18 q^{-103} -27 q^{-104} +7 q^{-105} +3 q^{-106} +22 q^{-107} +22 q^{-108} -26 q^{-109} -9 q^{-110} -13 q^{-111} +11 q^{-112} +4 q^{-113} +13 q^{-114} +10 q^{-115} -22 q^{-116} -3 q^{-117} -7 q^{-118} +9 q^{-119} +2 q^{-120} +8 q^{-121} +4 q^{-122} -14 q^{-123} + q^{-124} -4 q^{-125} +5 q^{-126} +4 q^{-128} + q^{-129} -6 q^{-130} +2 q^{-131} -2 q^{-132} +2 q^{-133} + q^{-135} -2 q^{-137} + q^{-138} } |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-q^{41}-q^{40}+q^{37}+q^{35}+3 q^{34}-q^{33}-3 q^{32}-2 q^{31}-3 q^{30}+q^{29}+q^{27}+9 q^{26}+3 q^{25}-q^{24}-3 q^{23}-8 q^{22}-3 q^{21}-4 q^{20}-4 q^{19}+11 q^{18}+8 q^{17}+6 q^{16}+5 q^{15}-9 q^{14}-4 q^{13}-8 q^{12}-13 q^{11}+6 q^{10}+5 q^9+8 q^8+13 q^7-4 q^6-4 q^4-16 q^3+4 q^2-2 q+2+14 q^{-1} -5 q^{-2} + q^{-3} - q^{-4} -14 q^{-5} +10 q^{-6} +2 q^{-7} + q^{-8} +16 q^{-9} -9 q^{-10} -6 q^{-11} -8 q^{-12} -23 q^{-13} +12 q^{-14} +8 q^{-15} +12 q^{-16} +30 q^{-17} - q^{-18} -7 q^{-19} -17 q^{-20} -43 q^{-21} -7 q^{-22} +2 q^{-23} +17 q^{-24} +50 q^{-25} +20 q^{-26} +10 q^{-27} -11 q^{-28} -58 q^{-29} -32 q^{-30} -22 q^{-31} +3 q^{-32} +55 q^{-33} +41 q^{-34} +36 q^{-35} +11 q^{-36} -52 q^{-37} -44 q^{-38} -46 q^{-39} -25 q^{-40} +40 q^{-41} +44 q^{-42} +54 q^{-43} +36 q^{-44} -30 q^{-45} -35 q^{-46} -54 q^{-47} -49 q^{-48} +14 q^{-49} +28 q^{-50} +54 q^{-51} +52 q^{-52} -5 q^{-53} -12 q^{-54} -44 q^{-55} -57 q^{-56} -9 q^{-57} + q^{-58} +37 q^{-59} +55 q^{-60} +16 q^{-61} +12 q^{-62} -22 q^{-63} -52 q^{-64} -25 q^{-65} -27 q^{-66} +13 q^{-67} +49 q^{-68} +30 q^{-69} +36 q^{-70} + q^{-71} -42 q^{-72} -36 q^{-73} -49 q^{-74} -11 q^{-75} +38 q^{-76} +41 q^{-77} +57 q^{-78} +21 q^{-79} -33 q^{-80} -43 q^{-81} -67 q^{-82} -31 q^{-83} +30 q^{-84} +50 q^{-85} +73 q^{-86} +33 q^{-87} -28 q^{-88} -52 q^{-89} -80 q^{-90} -40 q^{-91} +30 q^{-92} +62 q^{-93} +85 q^{-94} +38 q^{-95} -32 q^{-96} -68 q^{-97} -90 q^{-98} -41 q^{-99} +36 q^{-100} +76 q^{-101} +97 q^{-102} +45 q^{-103} -37 q^{-104} -84 q^{-105} -103 q^{-106} -49 q^{-107} +33 q^{-108} +84 q^{-109} +108 q^{-110} +59 q^{-111} -25 q^{-112} -80 q^{-113} -109 q^{-114} -66 q^{-115} +13 q^{-116} +67 q^{-117} +103 q^{-118} +70 q^{-119} +2 q^{-120} -50 q^{-121} -92 q^{-122} -70 q^{-123} -12 q^{-124} +35 q^{-125} +73 q^{-126} +59 q^{-127} +17 q^{-128} -14 q^{-129} -54 q^{-130} -49 q^{-131} -16 q^{-132} +4 q^{-133} +36 q^{-134} +30 q^{-135} +12 q^{-136} +6 q^{-137} -19 q^{-138} -16 q^{-139} -7 q^{-140} -11 q^{-141} +9 q^{-142} +6 q^{-143} -2 q^{-144} +11 q^{-145} +5 q^{-147} +4 q^{-148} -15 q^{-149} - q^{-150} -7 q^{-151} -7 q^{-152} +11 q^{-153} +3 q^{-154} +10 q^{-155} +8 q^{-156} -10 q^{-157} -4 q^{-158} -8 q^{-159} -6 q^{-160} +8 q^{-161} +2 q^{-162} +5 q^{-163} +6 q^{-164} -6 q^{-165} - q^{-166} -4 q^{-167} -4 q^{-168} +5 q^{-169} +2 q^{-171} +2 q^{-172} -3 q^{-173} -2 q^{-176} +2 q^{-177} + q^{-179} -2 q^{-181} + q^{-182} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|






