8 7: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 8 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 7 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,6,-5,7,-8,2,-3,4,-6,5,-7,3/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=8|k=7|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,6,-5,7,-8,2,-3,4,-6,5,-7,3/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 8 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 8, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[K11n24]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n24]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 70: | Line 37: | ||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{17}-2 q^{16}+4 q^{14}-6 q^{13}+q^{12}+9 q^{11}-12 q^{10}+q^9+14 q^8-16 q^7+16 q^5-14 q^4-2 q^3+14 q^2-9 q-3+10 q^{-1} -4 q^{-2} -4 q^{-3} +5 q^{-4} - q^{-5} -2 q^{-6} + q^{-7} </math> | |
|||
coloured_jones_3 = <math>-q^{33}+2 q^{32}-q^{30}-2 q^{29}+3 q^{28}+q^{27}-4 q^{26}-q^{25}+7 q^{24}-11 q^{22}+q^{21}+16 q^{20}-q^{19}-22 q^{18}+q^{17}+26 q^{16}+2 q^{15}-31 q^{14}-2 q^{13}+30 q^{12}+6 q^{11}-31 q^{10}-7 q^9+26 q^8+12 q^7-26 q^6-10 q^5+18 q^4+17 q^3-18 q^2-14 q+10+19 q^{-1} -8 q^{-2} -15 q^{-3} +2 q^{-4} +14 q^{-5} + q^{-6} -11 q^{-7} -3 q^{-8} +7 q^{-9} +3 q^{-10} -4 q^{-11} -2 q^{-12} + q^{-13} +2 q^{-14} - q^{-15} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{17}-2 q^{16}+4 q^{14}-6 q^{13}+q^{12}+9 q^{11}-12 q^{10}+q^9+14 q^8-16 q^7+16 q^5-14 q^4-2 q^3+14 q^2-9 q-3+10 q^{-1} -4 q^{-2} -4 q^{-3} +5 q^{-4} - q^{-5} -2 q^{-6} + q^{-7} </math>|J3=<math>-q^{33}+2 q^{32}-q^{30}-2 q^{29}+3 q^{28}+q^{27}-4 q^{26}-q^{25}+7 q^{24}-11 q^{22}+q^{21}+16 q^{20}-q^{19}-22 q^{18}+q^{17}+26 q^{16}+2 q^{15}-31 q^{14}-2 q^{13}+30 q^{12}+6 q^{11}-31 q^{10}-7 q^9+26 q^8+12 q^7-26 q^6-10 q^5+18 q^4+17 q^3-18 q^2-14 q+10+19 q^{-1} -8 q^{-2} -15 q^{-3} +2 q^{-4} +14 q^{-5} + q^{-6} -11 q^{-7} -3 q^{-8} +7 q^{-9} +3 q^{-10} -4 q^{-11} -2 q^{-12} + q^{-13} +2 q^{-14} - q^{-15} </math>|J4=<math>q^{54}-2 q^{53}+q^{51}-q^{50}+5 q^{49}-5 q^{48}+q^{47}-6 q^{45}+12 q^{44}-8 q^{43}+6 q^{42}+q^{41}-17 q^{40}+14 q^{39}-12 q^{38}+21 q^{37}+10 q^{36}-33 q^{35}+5 q^{34}-24 q^{33}+43 q^{32}+32 q^{31}-44 q^{30}-10 q^{29}-46 q^{28}+58 q^{27}+56 q^{26}-43 q^{25}-17 q^{24}-69 q^{23}+60 q^{22}+70 q^{21}-37 q^{20}-13 q^{19}-79 q^{18}+53 q^{17}+66 q^{16}-29 q^{15}-q^{14}-79 q^{13}+39 q^{12}+55 q^{11}-18 q^{10}+11 q^9-72 q^8+20 q^7+40 q^6-4 q^5+26 q^4-61 q^3-q^2+20 q+7+40 q^{-1} -43 q^{-2} -14 q^{-3} -2 q^{-4} +6 q^{-5} +45 q^{-6} -21 q^{-7} -13 q^{-8} -15 q^{-9} -4 q^{-10} +35 q^{-11} -3 q^{-12} -4 q^{-13} -14 q^{-14} -10 q^{-15} +18 q^{-16} +2 q^{-17} +2 q^{-18} -5 q^{-19} -7 q^{-20} +5 q^{-21} + q^{-22} +2 q^{-23} - q^{-24} -2 q^{-25} + q^{-26} </math>|J5=<math>-q^{80}+2 q^{79}-q^{77}+q^{76}-2 q^{75}-3 q^{74}+3 q^{73}+3 q^{72}+4 q^{70}-4 q^{69}-10 q^{68}-q^{67}+6 q^{66}+8 q^{65}+11 q^{64}-3 q^{63}-19 q^{62}-17 q^{61}+21 q^{59}+32 q^{58}+12 q^{57}-26 q^{56}-51 q^{55}-31 q^{54}+27 q^{53}+72 q^{52}+58 q^{51}-19 q^{50}-94 q^{49}-93 q^{48}+5 q^{47}+113 q^{46}+127 q^{45}+19 q^{44}-125 q^{43}-160 q^{42}-43 q^{41}+125 q^{40}+186 q^{39}+71 q^{38}-125 q^{37}-202 q^{36}-86 q^{35}+109 q^{34}+209 q^{33}+109 q^{32}-107 q^{31}-209 q^{30}-108 q^{29}+91 q^{28}+201 q^{27}+117 q^{26}-87 q^{25}-194 q^{24}-105 q^{23}+70 q^{22}+179 q^{21}+111 q^{20}-68 q^{19}-163 q^{18}-96 q^{17}+41 q^{16}+145 q^{15}+105 q^{14}-39 q^{13}-122 q^{12}-85 q^{11}+3 q^{10}+98 q^9+93 q^8-2 q^7-68 q^6-64 q^5-32 q^4+39 q^3+64 q^2+28 q-12-28 q^{-1} -43 q^{-2} -14 q^{-3} +19 q^{-4} +30 q^{-5} +28 q^{-6} +11 q^{-7} -23 q^{-8} -37 q^{-9} -23 q^{-10} +6 q^{-11} +32 q^{-12} +36 q^{-13} +7 q^{-14} -25 q^{-15} -34 q^{-16} -19 q^{-17} +11 q^{-18} +30 q^{-19} +25 q^{-20} -4 q^{-21} -20 q^{-22} -20 q^{-23} -7 q^{-24} +11 q^{-25} +18 q^{-26} +7 q^{-27} -6 q^{-28} -8 q^{-29} -6 q^{-30} -2 q^{-31} +7 q^{-32} +5 q^{-33} - q^{-34} -2 q^{-35} - q^{-36} -2 q^{-37} + q^{-38} +2 q^{-39} - q^{-40} </math>|J6=<math>q^{111}-2 q^{110}+q^{108}-q^{107}+2 q^{106}+5 q^{104}-7 q^{103}-3 q^{102}+2 q^{101}-5 q^{100}+5 q^{99}+5 q^{98}+16 q^{97}-15 q^{96}-9 q^{95}-q^{94}-15 q^{93}+7 q^{92}+17 q^{91}+39 q^{90}-22 q^{89}-18 q^{88}-12 q^{87}-40 q^{86}+3 q^{85}+40 q^{84}+86 q^{83}-14 q^{82}-28 q^{81}-43 q^{80}-103 q^{79}-22 q^{78}+74 q^{77}+176 q^{76}+43 q^{75}-17 q^{74}-98 q^{73}-232 q^{72}-108 q^{71}+92 q^{70}+312 q^{69}+176 q^{68}+58 q^{67}-141 q^{66}-413 q^{65}-272 q^{64}+43 q^{63}+436 q^{62}+354 q^{61}+206 q^{60}-118 q^{59}-569 q^{58}-463 q^{57}-72 q^{56}+485 q^{55}+487 q^{54}+366 q^{53}-32 q^{52}-635 q^{51}-594 q^{50}-195 q^{49}+465 q^{48}+529 q^{47}+466 q^{46}+58 q^{45}-627 q^{44}-637 q^{43}-267 q^{42}+426 q^{41}+508 q^{40}+493 q^{39}+106 q^{38}-589 q^{37}-623 q^{36}-284 q^{35}+394 q^{34}+461 q^{33}+481 q^{32}+124 q^{31}-535 q^{30}-583 q^{29}-286 q^{28}+351 q^{27}+399 q^{26}+456 q^{25}+147 q^{24}-449 q^{23}-524 q^{22}-297 q^{21}+270 q^{20}+312 q^{19}+424 q^{18}+189 q^{17}-321 q^{16}-437 q^{15}-309 q^{14}+159 q^{13}+191 q^{12}+364 q^{11}+230 q^{10}-166 q^9-310 q^8-289 q^7+50 q^6+47 q^5+262 q^4+229 q^3-26 q^2-157 q-210-8 q^{-1} -78 q^{-2} +127 q^{-3} +162 q^{-4} +48 q^{-5} -26 q^{-6} -89 q^{-7} +10 q^{-8} -128 q^{-9} +11 q^{-10} +51 q^{-11} +37 q^{-12} +27 q^{-13} +10 q^{-14} +73 q^{-15} -92 q^{-16} -31 q^{-17} -32 q^{-18} -17 q^{-19} +3 q^{-20} +34 q^{-21} +108 q^{-22} -23 q^{-23} -7 q^{-24} -42 q^{-25} -43 q^{-26} -39 q^{-27} +4 q^{-28} +83 q^{-29} +13 q^{-30} +23 q^{-31} -13 q^{-32} -24 q^{-33} -44 q^{-34} -21 q^{-35} +37 q^{-36} +8 q^{-37} +23 q^{-38} +6 q^{-39} - q^{-40} -22 q^{-41} -18 q^{-42} +10 q^{-43} - q^{-44} +9 q^{-45} +5 q^{-46} +5 q^{-47} -7 q^{-48} -7 q^{-49} +3 q^{-50} -2 q^{-51} +2 q^{-52} + q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-57} </math>|J7=<math>-q^{147}+2 q^{146}-q^{144}+q^{143}-2 q^{142}-2 q^{140}-q^{139}+7 q^{138}+q^{137}-q^{136}+4 q^{135}-7 q^{134}-3 q^{133}-7 q^{132}-6 q^{131}+18 q^{130}+6 q^{129}+2 q^{128}+9 q^{127}-13 q^{126}-8 q^{125}-18 q^{124}-17 q^{123}+32 q^{122}+16 q^{121}+11 q^{120}+19 q^{119}-26 q^{118}-19 q^{117}-35 q^{116}-33 q^{115}+50 q^{114}+42 q^{113}+44 q^{112}+36 q^{111}-59 q^{110}-64 q^{109}-82 q^{108}-65 q^{107}+84 q^{106}+117 q^{105}+145 q^{104}+100 q^{103}-110 q^{102}-182 q^{101}-239 q^{100}-177 q^{99}+112 q^{98}+273 q^{97}+387 q^{96}+302 q^{95}-98 q^{94}-371 q^{93}-566 q^{92}-481 q^{91}+35 q^{90}+446 q^{89}+775 q^{88}+721 q^{87}+87 q^{86}-499 q^{85}-990 q^{84}-979 q^{83}-256 q^{82}+491 q^{81}+1163 q^{80}+1255 q^{79}+467 q^{78}-436 q^{77}-1292 q^{76}-1498 q^{75}-682 q^{74}+333 q^{73}+1361 q^{72}+1686 q^{71}+877 q^{70}-205 q^{69}-1364 q^{68}-1814 q^{67}-1047 q^{66}+81 q^{65}+1343 q^{64}+1884 q^{63}+1141 q^{62}+27 q^{61}-1276 q^{60}-1903 q^{59}-1218 q^{58}-113 q^{57}+1238 q^{56}+1897 q^{55}+1230 q^{54}+155 q^{53}-1174 q^{52}-1863 q^{51}-1238 q^{50}-193 q^{49}+1136 q^{48}+1838 q^{47}+1215 q^{46}+200 q^{45}-1082 q^{44}-1784 q^{43}-1203 q^{42}-233 q^{41}+1039 q^{40}+1741 q^{39}+1174 q^{38}+253 q^{37}-952 q^{36}-1669 q^{35}-1174 q^{34}-305 q^{33}+876 q^{32}+1589 q^{31}+1138 q^{30}+369 q^{29}-731 q^{28}-1485 q^{27}-1145 q^{26}-447 q^{25}+610 q^{24}+1354 q^{23}+1087 q^{22}+539 q^{21}-412 q^{20}-1199 q^{19}-1075 q^{18}-619 q^{17}+259 q^{16}+1017 q^{15}+966 q^{14}+687 q^{13}-38 q^{12}-808 q^{11}-897 q^{10}-728 q^9-101 q^8+599 q^7+719 q^6+716 q^5+273 q^4-369 q^3-582 q^2-668 q-345+191 q^{-1} +370 q^{-2} +554 q^{-3} +398 q^{-4} -24 q^{-5} -204 q^{-6} -425 q^{-7} -363 q^{-8} -60 q^{-9} +41 q^{-10} +264 q^{-11} +294 q^{-12} +103 q^{-13} +60 q^{-14} -126 q^{-15} -191 q^{-16} -75 q^{-17} -113 q^{-18} +15 q^{-19} +86 q^{-20} +25 q^{-21} +109 q^{-22} +35 q^{-23} - q^{-24} +48 q^{-25} -67 q^{-26} -60 q^{-27} -43 q^{-28} -89 q^{-29} +14 q^{-30} +23 q^{-31} +49 q^{-32} +128 q^{-33} +34 q^{-34} -34 q^{-36} -108 q^{-37} -52 q^{-38} -45 q^{-39} -4 q^{-40} +91 q^{-41} +66 q^{-42} +49 q^{-43} +20 q^{-44} -52 q^{-45} -37 q^{-46} -53 q^{-47} -45 q^{-48} +25 q^{-49} +29 q^{-50} +42 q^{-51} +33 q^{-52} -9 q^{-53} -5 q^{-54} -20 q^{-55} -33 q^{-56} -6 q^{-57} +2 q^{-58} +16 q^{-59} +19 q^{-60} -2 q^{-61} +4 q^{-62} - q^{-63} -11 q^{-64} -5 q^{-65} -4 q^{-66} +4 q^{-67} +7 q^{-68} - q^{-69} +2 q^{-71} -2 q^{-72} - q^{-73} -2 q^{-74} + q^{-75} +2 q^{-76} - q^{-77} </math>}} |
|||
coloured_jones_4 = <math>q^{54}-2 q^{53}+q^{51}-q^{50}+5 q^{49}-5 q^{48}+q^{47}-6 q^{45}+12 q^{44}-8 q^{43}+6 q^{42}+q^{41}-17 q^{40}+14 q^{39}-12 q^{38}+21 q^{37}+10 q^{36}-33 q^{35}+5 q^{34}-24 q^{33}+43 q^{32}+32 q^{31}-44 q^{30}-10 q^{29}-46 q^{28}+58 q^{27}+56 q^{26}-43 q^{25}-17 q^{24}-69 q^{23}+60 q^{22}+70 q^{21}-37 q^{20}-13 q^{19}-79 q^{18}+53 q^{17}+66 q^{16}-29 q^{15}-q^{14}-79 q^{13}+39 q^{12}+55 q^{11}-18 q^{10}+11 q^9-72 q^8+20 q^7+40 q^6-4 q^5+26 q^4-61 q^3-q^2+20 q+7+40 q^{-1} -43 q^{-2} -14 q^{-3} -2 q^{-4} +6 q^{-5} +45 q^{-6} -21 q^{-7} -13 q^{-8} -15 q^{-9} -4 q^{-10} +35 q^{-11} -3 q^{-12} -4 q^{-13} -14 q^{-14} -10 q^{-15} +18 q^{-16} +2 q^{-17} +2 q^{-18} -5 q^{-19} -7 q^{-20} +5 q^{-21} + q^{-22} +2 q^{-23} - q^{-24} -2 q^{-25} + q^{-26} </math> | |
|||
coloured_jones_5 = <math>-q^{80}+2 q^{79}-q^{77}+q^{76}-2 q^{75}-3 q^{74}+3 q^{73}+3 q^{72}+4 q^{70}-4 q^{69}-10 q^{68}-q^{67}+6 q^{66}+8 q^{65}+11 q^{64}-3 q^{63}-19 q^{62}-17 q^{61}+21 q^{59}+32 q^{58}+12 q^{57}-26 q^{56}-51 q^{55}-31 q^{54}+27 q^{53}+72 q^{52}+58 q^{51}-19 q^{50}-94 q^{49}-93 q^{48}+5 q^{47}+113 q^{46}+127 q^{45}+19 q^{44}-125 q^{43}-160 q^{42}-43 q^{41}+125 q^{40}+186 q^{39}+71 q^{38}-125 q^{37}-202 q^{36}-86 q^{35}+109 q^{34}+209 q^{33}+109 q^{32}-107 q^{31}-209 q^{30}-108 q^{29}+91 q^{28}+201 q^{27}+117 q^{26}-87 q^{25}-194 q^{24}-105 q^{23}+70 q^{22}+179 q^{21}+111 q^{20}-68 q^{19}-163 q^{18}-96 q^{17}+41 q^{16}+145 q^{15}+105 q^{14}-39 q^{13}-122 q^{12}-85 q^{11}+3 q^{10}+98 q^9+93 q^8-2 q^7-68 q^6-64 q^5-32 q^4+39 q^3+64 q^2+28 q-12-28 q^{-1} -43 q^{-2} -14 q^{-3} +19 q^{-4} +30 q^{-5} +28 q^{-6} +11 q^{-7} -23 q^{-8} -37 q^{-9} -23 q^{-10} +6 q^{-11} +32 q^{-12} +36 q^{-13} +7 q^{-14} -25 q^{-15} -34 q^{-16} -19 q^{-17} +11 q^{-18} +30 q^{-19} +25 q^{-20} -4 q^{-21} -20 q^{-22} -20 q^{-23} -7 q^{-24} +11 q^{-25} +18 q^{-26} +7 q^{-27} -6 q^{-28} -8 q^{-29} -6 q^{-30} -2 q^{-31} +7 q^{-32} +5 q^{-33} - q^{-34} -2 q^{-35} - q^{-36} -2 q^{-37} + q^{-38} +2 q^{-39} - q^{-40} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{111}-2 q^{110}+q^{108}-q^{107}+2 q^{106}+5 q^{104}-7 q^{103}-3 q^{102}+2 q^{101}-5 q^{100}+5 q^{99}+5 q^{98}+16 q^{97}-15 q^{96}-9 q^{95}-q^{94}-15 q^{93}+7 q^{92}+17 q^{91}+39 q^{90}-22 q^{89}-18 q^{88}-12 q^{87}-40 q^{86}+3 q^{85}+40 q^{84}+86 q^{83}-14 q^{82}-28 q^{81}-43 q^{80}-103 q^{79}-22 q^{78}+74 q^{77}+176 q^{76}+43 q^{75}-17 q^{74}-98 q^{73}-232 q^{72}-108 q^{71}+92 q^{70}+312 q^{69}+176 q^{68}+58 q^{67}-141 q^{66}-413 q^{65}-272 q^{64}+43 q^{63}+436 q^{62}+354 q^{61}+206 q^{60}-118 q^{59}-569 q^{58}-463 q^{57}-72 q^{56}+485 q^{55}+487 q^{54}+366 q^{53}-32 q^{52}-635 q^{51}-594 q^{50}-195 q^{49}+465 q^{48}+529 q^{47}+466 q^{46}+58 q^{45}-627 q^{44}-637 q^{43}-267 q^{42}+426 q^{41}+508 q^{40}+493 q^{39}+106 q^{38}-589 q^{37}-623 q^{36}-284 q^{35}+394 q^{34}+461 q^{33}+481 q^{32}+124 q^{31}-535 q^{30}-583 q^{29}-286 q^{28}+351 q^{27}+399 q^{26}+456 q^{25}+147 q^{24}-449 q^{23}-524 q^{22}-297 q^{21}+270 q^{20}+312 q^{19}+424 q^{18}+189 q^{17}-321 q^{16}-437 q^{15}-309 q^{14}+159 q^{13}+191 q^{12}+364 q^{11}+230 q^{10}-166 q^9-310 q^8-289 q^7+50 q^6+47 q^5+262 q^4+229 q^3-26 q^2-157 q-210-8 q^{-1} -78 q^{-2} +127 q^{-3} +162 q^{-4} +48 q^{-5} -26 q^{-6} -89 q^{-7} +10 q^{-8} -128 q^{-9} +11 q^{-10} +51 q^{-11} +37 q^{-12} +27 q^{-13} +10 q^{-14} +73 q^{-15} -92 q^{-16} -31 q^{-17} -32 q^{-18} -17 q^{-19} +3 q^{-20} +34 q^{-21} +108 q^{-22} -23 q^{-23} -7 q^{-24} -42 q^{-25} -43 q^{-26} -39 q^{-27} +4 q^{-28} +83 q^{-29} +13 q^{-30} +23 q^{-31} -13 q^{-32} -24 q^{-33} -44 q^{-34} -21 q^{-35} +37 q^{-36} +8 q^{-37} +23 q^{-38} +6 q^{-39} - q^{-40} -22 q^{-41} -18 q^{-42} +10 q^{-43} - q^{-44} +9 q^{-45} +5 q^{-46} +5 q^{-47} -7 q^{-48} -7 q^{-49} +3 q^{-50} -2 q^{-51} +2 q^{-52} + q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-57} </math> | |
|||
coloured_jones_7 = <math>-q^{147}+2 q^{146}-q^{144}+q^{143}-2 q^{142}-2 q^{140}-q^{139}+7 q^{138}+q^{137}-q^{136}+4 q^{135}-7 q^{134}-3 q^{133}-7 q^{132}-6 q^{131}+18 q^{130}+6 q^{129}+2 q^{128}+9 q^{127}-13 q^{126}-8 q^{125}-18 q^{124}-17 q^{123}+32 q^{122}+16 q^{121}+11 q^{120}+19 q^{119}-26 q^{118}-19 q^{117}-35 q^{116}-33 q^{115}+50 q^{114}+42 q^{113}+44 q^{112}+36 q^{111}-59 q^{110}-64 q^{109}-82 q^{108}-65 q^{107}+84 q^{106}+117 q^{105}+145 q^{104}+100 q^{103}-110 q^{102}-182 q^{101}-239 q^{100}-177 q^{99}+112 q^{98}+273 q^{97}+387 q^{96}+302 q^{95}-98 q^{94}-371 q^{93}-566 q^{92}-481 q^{91}+35 q^{90}+446 q^{89}+775 q^{88}+721 q^{87}+87 q^{86}-499 q^{85}-990 q^{84}-979 q^{83}-256 q^{82}+491 q^{81}+1163 q^{80}+1255 q^{79}+467 q^{78}-436 q^{77}-1292 q^{76}-1498 q^{75}-682 q^{74}+333 q^{73}+1361 q^{72}+1686 q^{71}+877 q^{70}-205 q^{69}-1364 q^{68}-1814 q^{67}-1047 q^{66}+81 q^{65}+1343 q^{64}+1884 q^{63}+1141 q^{62}+27 q^{61}-1276 q^{60}-1903 q^{59}-1218 q^{58}-113 q^{57}+1238 q^{56}+1897 q^{55}+1230 q^{54}+155 q^{53}-1174 q^{52}-1863 q^{51}-1238 q^{50}-193 q^{49}+1136 q^{48}+1838 q^{47}+1215 q^{46}+200 q^{45}-1082 q^{44}-1784 q^{43}-1203 q^{42}-233 q^{41}+1039 q^{40}+1741 q^{39}+1174 q^{38}+253 q^{37}-952 q^{36}-1669 q^{35}-1174 q^{34}-305 q^{33}+876 q^{32}+1589 q^{31}+1138 q^{30}+369 q^{29}-731 q^{28}-1485 q^{27}-1145 q^{26}-447 q^{25}+610 q^{24}+1354 q^{23}+1087 q^{22}+539 q^{21}-412 q^{20}-1199 q^{19}-1075 q^{18}-619 q^{17}+259 q^{16}+1017 q^{15}+966 q^{14}+687 q^{13}-38 q^{12}-808 q^{11}-897 q^{10}-728 q^9-101 q^8+599 q^7+719 q^6+716 q^5+273 q^4-369 q^3-582 q^2-668 q-345+191 q^{-1} +370 q^{-2} +554 q^{-3} +398 q^{-4} -24 q^{-5} -204 q^{-6} -425 q^{-7} -363 q^{-8} -60 q^{-9} +41 q^{-10} +264 q^{-11} +294 q^{-12} +103 q^{-13} +60 q^{-14} -126 q^{-15} -191 q^{-16} -75 q^{-17} -113 q^{-18} +15 q^{-19} +86 q^{-20} +25 q^{-21} +109 q^{-22} +35 q^{-23} - q^{-24} +48 q^{-25} -67 q^{-26} -60 q^{-27} -43 q^{-28} -89 q^{-29} +14 q^{-30} +23 q^{-31} +49 q^{-32} +128 q^{-33} +34 q^{-34} -34 q^{-36} -108 q^{-37} -52 q^{-38} -45 q^{-39} -4 q^{-40} +91 q^{-41} +66 q^{-42} +49 q^{-43} +20 q^{-44} -52 q^{-45} -37 q^{-46} -53 q^{-47} -45 q^{-48} +25 q^{-49} +29 q^{-50} +42 q^{-51} +33 q^{-52} -9 q^{-53} -5 q^{-54} -20 q^{-55} -33 q^{-56} -6 q^{-57} +2 q^{-58} +16 q^{-59} +19 q^{-60} -2 q^{-61} +4 q^{-62} - q^{-63} -11 q^{-64} -5 q^{-65} -4 q^{-66} +4 q^{-67} +7 q^{-68} - q^{-69} +2 q^{-71} -2 q^{-72} - q^{-73} -2 q^{-74} + q^{-75} +2 q^{-76} - q^{-77} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 7]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 16], X[5, 13, 6, 12], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 16], X[5, 13, 6, 12], |
|||
X[7, 15, 8, 14], X[13, 7, 14, 6], X[15, 9, 16, 8], X[9, 2, 10, 3]]</nowiki></ |
X[7, 15, 8, 14], X[13, 7, 14, 6], X[15, 9, 16, 8], X[9, 2, 10, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 7]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 7]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 8, -2, 1, -4, 6, -5, 7, -8, 2, -3, 4, -6, 5, -7, 3]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 7]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, -2, 1, -2, -2}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 14, 2, 16, 6, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 7]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_7_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 7]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, 1, -2, 1, -2, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 7]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 5 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 7]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 7]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:8_7_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 7]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 2, {3, 6}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 7]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 5 2 3 |
|||
-5 + t - -- + - + 5 t - 3 t + t |
-5 + t - -- + - + 5 t - 3 t + t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 7]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 7]][z]</nowiki></code></td></tr> |
|||
1 + 2 z + 3 z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 2 z + 3 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 7]], KnotSignature[Knot[8, 7]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{23, 2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 3 4 5 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 7], Knot[11, NonAlternating, 24]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 7]], KnotSignature[Knot[8, 7]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{23, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 7]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2 3 4 5 6 |
|||
-2 - q + - + 4 q - 4 q + 4 q - 3 q + 2 q - q |
-2 - q + - + 4 q - 4 q + 4 q - 3 q + 2 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 7]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 7]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 7]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 7]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 2 6 10 14 18 |
|||
1 - q + 2 q + 2 q + q - q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 7]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 6 |
|||
2 4 2 3 z 8 z 4 z 5 z z |
2 4 2 3 z 8 z 4 z 5 z z |
||
-1 - -- + -- - 3 z - ---- + ---- - z - -- + ---- + -- |
-1 - -- + -- - 3 z - ---- + ---- - z - -- + ---- + -- |
||
4 2 4 2 4 2 2 |
4 2 4 2 4 2 2 |
||
a a a a a a a</nowiki></ |
a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 7]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 7]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 3 |
|||
2 4 z 2 z 2 z 2 2 z 4 z 12 z z |
2 4 z 2 z 2 z 2 2 z 4 z 12 z z |
||
-1 - -- - -- - -- + --- + --- + a z + 6 z - ---- + ---- + ----- + -- - |
-1 - -- - -- - -- + --- + --- + a z + 6 z - ---- + ---- + ----- + -- - |
||
Line 160: | Line 201: | ||
a z + 2 z + ---- + ---- + -- + -- |
a z + 2 z + ---- + ---- + -- + -- |
||
4 2 3 a |
4 2 3 a |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 7]], Vassiliev[3][Knot[8, 7]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 7]], Vassiliev[3][Knot[8, 7]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 7]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 7]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 1 q 3 5 |
|||
3 q + 2 q + ----- + ----- + ---- + --- + - + 2 q t + 2 q t + |
3 q + 2 q + ----- + ----- + ---- + --- + - + 2 q t + 2 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 172: | Line 221: | ||
5 2 7 2 7 3 9 3 9 4 11 4 13 5 |
5 2 7 2 7 3 9 3 9 4 11 4 13 5 |
||
2 q t + 2 q t + q t + 2 q t + q t + q t + q t</nowiki></ |
2 q t + 2 q t + q t + 2 q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 7], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 7], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 2 -5 5 4 4 10 2 3 4 |
|||
-3 + q - -- - q + -- - -- - -- + -- - 9 q + 14 q - 2 q - 14 q + |
-3 + q - -- - q + -- - -- - -- + -- - 9 q + 14 q - 2 q - 14 q + |
||
6 4 3 2 q |
6 4 3 2 q |
||
Line 184: | Line 237: | ||
16 17 |
16 17 |
||
2 q + q</nowiki></ |
2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 16:59, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X11,1,12,16 X5,13,6,12 X7,15,8,14 X13,7,14,6 X15,9,16,8 X9,2,10,3 |
Gauss code | -1, 8, -2, 1, -4, 6, -5, 7, -8, 2, -3, 4, -6, 5, -7, 3 |
Dowker-Thistlethwaite code | 4 10 12 14 2 16 6 8 |
Conway Notation | [4112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
[{10, 6}, {1, 8}, {7, 9}, {8, 10}, {9, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 7}] |
[edit Notes on presentations of 8 7]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 7"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X11,1,12,16 X5,13,6,12 X7,15,8,14 X13,7,14,6 X15,9,16,8 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 1, -4, 6, -5, 7, -8, 2, -3, 4, -6, 5, -7, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 14 2 16 6 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[4112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{10, 6}, {1, 8}, {7, 9}, {8, 10}, {9, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 7}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 7"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 23, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n24,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 7"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n24,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 8 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|